Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T10:55:36.617Z Has data issue: false hasContentIssue false

The Influence of Annealing Temperature and Doping on the Red/Near-Infrared Luminescence of Ion Implanted SiO2:nc-Si

Published online by Cambridge University Press:  21 March 2011

D. I. Tetelbaum
Affiliation:
Physico-Technical Research Institute of Nizhnii Novgorod State University, 603950, Nizhnii Novgorod, Gagarin prospect, 23/3, Russia
V. A. Burdov
Affiliation:
Physico-Technical Research Institute of Nizhnii Novgorod State University, 603950, Nizhnii Novgorod, Gagarin prospect, 23/3, Russia
S. A. Trushin
Affiliation:
Physico-Technical Research Institute of Nizhnii Novgorod State University, 603950, Nizhnii Novgorod, Gagarin prospect, 23/3, Russia
A. N. Mikhaylov
Affiliation:
Physico-Technical Research Institute of Nizhnii Novgorod State University, 603950, Nizhnii Novgorod, Gagarin prospect, 23/3, Russia
D. G. Revin
Affiliation:
Russian Academy of Science Institute of Physics for Microstructures, 603600 Nizhnii Novgorod, GSP – 105, Russia
D. M. Gaponova
Affiliation:
Russian Academy of Science Institute of Physics for Microstructures, 603600 Nizhnii Novgorod, GSP – 105, Russia
Get access

Abstract

The results of an experimental research of the dependence of photoluminescence (PL) intensity in region about 800 nm for silicon nanoinclusions (quantum dots) obtained by Si ion implantation in SiO2 on the dose of Si ions at two temperatures of an annealing ?ann = 1000 and 1100° ? are presented. It is established that in both cases the dependences have the shape of the curves with a maximum. For 1100° ? the maximum is shifted to the lower dose. The influence of an additional ion doping by the phosphorus on intensity of PL is investigated depending on the dose (concentration) of P and the dose of the silicon at ?ann = 1000° ?. It is shown, that in all the investigated region of P doses, the presence of P enhances the PL. The degree of the enhancement increases with the P dose, but the rate of the intensity enhancement goes down. With the growth of Si dose at the constant dose of P, the degree of the enhancement decreases. In an approximation of an effective mass, the energy spectra of a quantum dot are calculated at the presence of one or several P atoms for various their arrangement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mutti, P., Ghislotti, G., Bertoni, S., Bonoldi, L., Cerofolini, G.F., Meda, L., Grilli, E., M. Guzzi, Appl. Phys. Lett., 66, 851, (1995).Google Scholar
2. Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, R., Itoh, N., J.Appl.Phys., 75, 7779, (1994).Google Scholar
3. Min, K. S., Scheglov, K.V., Yang, C.M., Atwater, H. A., Brongersma, M.L., Polman, A., Appl. Phys. Lett., 69, 2033, (1996).Google Scholar
4. Kachurin, G.A., Tischenko, I.E., Zhuravlev, K.S., Pazdnikov, N.A., Volodin, V.A., Gutakovsky, A.K., Leiser, A.F., Skorupa, W., Yankov, R.A., Nucl. Instr. Meth. B, 122, 571, (1997).Google Scholar
5. Fujii, M., Mimura, A., Hayashi, S., Yamamoto, K., Appl. Phys. Lett., 75, 184, (1999).Google Scholar
6. Tetelbaum, D.I., Gorshkov, O.N., Trushun, S.A., Revin, D.G., Gaponova, D.M., Eckstein, W., Nanotechnology, 11, 295, (2000).Google Scholar
7. Tetelbaum, D.I., Trushin, S.A., Burdov, V.A., Golovanov, A.I., Revin, D.G., Gaponova, D.M., B, 174, 123, (2001).Google Scholar
8. Voos, M., Uzan, Ph., Delalande, C., Bastard, G., Halimaoui, A., Appl. Phys. Lett., 61, 1213, (1992).Google Scholar
9. Mimura, A., Fujii, M., Hayashi, S., Kovalev, D., Koch, F., Phys. Rev. B, 62, 12625, (2000).Google Scholar
10. Takeoka, S., Fujii, M., Hayashi, S., Phys. Rev. B, 62, 16820, (2000).Google Scholar
11. Guha, S., Quadri, B., Musket, R.G., Wall, M.A., Shimizu-Iwayama, T., J. Appl. Phys., 88, 3954, (2000).Google Scholar
12. Delley, B., Steigmeier, E.F., Appl. Phys. Lett., 67, 2370, (1995).Google Scholar
13. Y.Ren, S., Dow, J.D., Phys. Rev. B, 45, 6492, (1992).Google Scholar
14. Delerue, C., Lannoo, M., Allan, G., Phys. Rev. Lett., 84, 2457, (2000).Google Scholar
15. Ogut, S., Chelikowsky, J.R., Phys. Rev. Lett., 79, 1770, (1997).Google Scholar
16. Franceschetti, A., Zunger, A., Phys. Rev. B, 62, 2614, (2000).Google Scholar