Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T10:06:46.532Z Has data issue: false hasContentIssue false

Influence of Er depth profiles on luminescence properties of Er-doped GaN

Published online by Cambridge University Press:  17 March 2011

Shin-ichiro Uekusa
Affiliation:
Department of Electrical and Electronic Engineering, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
Tomoaki Hirano
Affiliation:
Department of Electrical and Electronic Engineering, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
Get access

Abstract

Erbium (Er) ions were implanted into gallium nitride (GaN) and the temperature-dependent photoluminescence (PL) and PL lifetime were characterized. Thermal quenching of the Er3+ luminescence was restrained by using GaN as a host material and PL was observed from Er3+ at room temperature. We prepared a flat depth profile of the density distribution of Er by ion-implanted into GaN and monitored the thermal quenching process due to the residual defects after implantation and annealing. We also monitored the auger effect that is believed to be the main cause of the thermal quenching process and concluded that, in the temperature range 15 K to 100 K, the thermal quenching process is dominated by nonradiative recombination from the first excited state (4I13/2) to the ground state (4I15/2) of Er3+.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uekusa, S., Ohshima, T., Majima, A., and Kumagai, M.: 1994 Int. Workshop on Electroluminescence, Beijing, 1994 p279 Google Scholar
2. Uekusa, S., Shimazu, K., Majima, A., and Yabuta, K.: Nucl. Instrum. & Methods 106 (1995) 477 Google Scholar
3. Majima, A., Uekusa, S., Abe, K., and Kumagai, M.: J.Lumin. 60/61 (1994) 595 Google Scholar
4. Tang, Y. S., Heasman, K. C., Gillin, W. P., and Sealy, B. J.: Appl. Phys. Lett. 55 (1989) 432 Google Scholar
5. Shin, J. H., Hoven, G. N. van den, and Polman, A.: Appl. Phys. Lett. 67 (1995) 377 Google Scholar
6. Przybylinska, H., Hendorfer, G., Bruckner, M., Palmetshofer, L., and Jantsch, W.: Appl. Phys. Lett. 66 (1995) 490 Google Scholar
7. Priolo, F., Franzo, G., Coffa, S., Polman, A., Libertio, S., Barklie, R., and Carey, D.: Appl. Phys. Lett. 78 (1995) 3874 Google Scholar
8. Needles, M., Shluter, M., and Lannoo, M.: Phys. Rev. B 47(1993) 15533 Google Scholar
9. Torvik, J. T., Feuerstein, R. J., Pankove, J. I., Qiu, C. H., and Namavar, F.,: Appl. Phys. Lett. 69 (1996) 2098 Google Scholar
10. Thaik, M., and Hommerich, U.: Appl. Phys. Lett. 71 (1997) 2641 Google Scholar
11. kim, S., Rhee, S. J., Turnbull, D. A., Li, X., Coleman, J. J., and Bishop, S. G.: Appl. Phys. Lett. 71 (1997) 2662 Google Scholar
12. Uekusa, S. and Hirano, T.: Int. Workshop on Nitride Semiconductors, 2000p498 Google Scholar
13. Yoshida, S., Misawa, S., and Gonda, S.: J. Appl. Phys. 53 (1982) 6844 Google Scholar
14. Dieke, G. H. and Crosswhite, H. M., Appl. Opt. 2, 675 (1963)Google Scholar
15. Wilson, B. A., Yen, W. M., Hegarty, J., and Imbusch, G. F.: Phys. Rev. B 19 (1979) 4238 Google Scholar
16. Massa, J. S., Buller, G. S., Walker, A. C., Smpson, J., Prior, K. A., and Cavenett, B. C.: Appl. Phys. Lett. 67 (1995) 61 Google Scholar