Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T04:48:08.588Z Has data issue: false hasContentIssue false

Influence of Pre-Gate Cleaning ON Si/SiO2 Interface and Electrical Performance of Cmos Gate Oxide

Published online by Cambridge University Press:  21 March 2011

X. Duan
Affiliation:
National Semiconductor Corp., South Portland, ME 04106 MIT, Dept. of Materials Science and Engineering, Cambridge, MA 02139
K. Kisslinger
Affiliation:
National Semiconductor Corp., South Portland, ME 04106
L. Mayes
Affiliation:
National Semiconductor Corp., South Portland, ME 04106
S. Ruby
Affiliation:
National Semiconductor Corp., South Portland, ME 04106
J. Barrett
Affiliation:
National Semiconductor Corp., South Portland, ME 04106
Get access

Abstract

The Si/SiO2 interface is attracting new interest as gate dielectrics in MOS devices become ultra thin. In this paper, the impact of pre-gate cleaning on the morphology of the Si/SiO2 interface and the electrical performance of CMOS gate oxides has been systematically investigated. Using the High-Resolution Transmission Electron Microscopy (HRTEM) technique, we observed the Si/SiO2 interface at an atomic level. We have found a direct experimental relationship between the pre-gate cleaning scheme, Si/SiO2 interface morphology, and the electrical properties of CMOS gate oxides. When the ratio of H2O2:NH4OH ≥ 1.45, the roughness of the Si/SiO2 interface was dramatically improved, which, in turn, increased the Charge-to-Breakdown to an ideal value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K. and Timp, G.; Nature 1999, v 399, n 6738, p 758.Google Scholar
[2] Cho, W., Kim, Y., Kim, E. and Kim, H.; Japanese Journal of Applied Physics, 1999, Part 1, v 38, n 1A, p 12.Google Scholar
[3].Eriguchi, K., Harada, Y. and Niwa, M.; Technical Digest - Proceedings of the 1998 IEEE International Electron Devices Meeting, P 175.Google Scholar
[4].Cho, W., Kim, E., Kang, J., Rha, K. and Kim, H.; Solid-State Electronics, 1998, v 42, n 4, p557.Google Scholar
[5].Yamada, R., Yugami, J. and Ohkura, M., Digest of Technical Papers -Proceedings of the 1997 Symposium on VLSI Technology; June 1997 Kyoto, Japan, P 147, 0743-1562, DTPTEW.Google Scholar
[6].Wolf, S. and Tauber, R. N., “Silicon Processing for the VLSI ERA”, v 1, 1986, Lattice Press, California, USA, P 531.Google Scholar
[7].Bayoumi, A., Fischer-Colbrie, A., Parker, R., Cox, M. and Greene, W.; Science and Technology of Semiconductor Surface Preparation, Proceedings of the 1997 MRS Spring Meeting, 1997, v 477, p 247.Google Scholar
[8].Ma, Y., Green, M. L., Torek, K., Ruzyllo, J., Opila, R., Konstadinidis, K., Siconolfi, D. and Brasen, D.; Journal of the Electrochemical Society, 1995, v 142, n 11, p L217.Google Scholar
[9].Ericsson, P., Bengtsson, S. and Sodervall, U.; Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 1997, n 1322, p 0346.Google Scholar
[10].Bean, K. E.; “Anisotropic Etching of Si”, IEEE Trans. Electron Devices, 1978, ED–25, p 1185.Google Scholar