Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T16:57:14.991Z Has data issue: false hasContentIssue false

Influence of surface treatment on adhesion of iCVD PGMA thin films for wafer-level bonding

Published online by Cambridge University Press:  20 February 2014

Vijay Jain Bharamaiah Jeevendrakumar
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203, U.S.A.
Bruce A. Altemus
Affiliation:
U.S.Technology Development Center, Tokyo Electron U.S Holdings Inc., 2400 Groove Blvd, Austin, TX 78741, U.S.A.
Adam J. Gildea
Affiliation:
U.S.Technology Development Center, Tokyo Electron U.S Holdings Inc., 2400 Groove Blvd, Austin, TX 78741, U.S.A.
Magnus Bergkvist
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203, U.S.A.
Get access

Abstract

This work demonstrates wafer bonding using initiated chemical vapor deposition (iCVD) poly(glycidylmethacrylate) (PGMA) thin films, and studies the impact of surface treatment to manipulate adhesion energy between polymer film and silicon substrate. Substrates were modified with organosilanes or nitrogen plasma prior to iCVD and bonding. Adhesion was characterized by measuring critical energy release rate (Gc) using a 4-point bend technique. Results demonstrate a correlation between substrate surface energy and polymer-substrate adhesion energy where, depending on the functional group, close to an order of magnitude variation in adhesion energy was observed. These results point to minimal covalent interaction between polymer and substrate for these samples. Exposing the bonded wafers to a thermal anneal step led to an improved grafting of PGMA to substrate. For grafted films, the sample failure mode shifted from adhesive to cohesive, with drastic increase in Gc. These findings demonstrate that the adhesion energy and failure mode of iCVD-PGMA bonded wafers can be manipulated through surface functionalization and thermal treatment, which enable both temporary and permanent chip-bonding applications using iCVD polymer films as adhesives.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Loscutoff, P., Zhou, H., Clendenning, S., and Bent, S., ACS Nano 4, 331 (2009).CrossRefGoogle Scholar
Niklaus, F., Stemme, G., Lu, J.-Q., and Gutmann, R.J., J. Appl. Phys. 99, 031101 (2006).CrossRefGoogle Scholar
McCullen, S.D., Haslauer, C.M., and Loboa, E.G., J. Mater. Chem. 20, 8776 (2010).CrossRefGoogle Scholar
Yang, X., Shi, J., Johnson, S., and Swanson, B., Langmuir 14, 1505 (1998).CrossRefGoogle Scholar
Bertin, D., Gigmes, D., a Marque, S.R., and Tordo, P., Chem. Soc. Rev. 40, 2189 (2011).CrossRefGoogle Scholar
Twite, R.L. and Bierwagen, G.P., Prog. Org. Coatings 33, 91 (1998).CrossRefGoogle Scholar
Lewis, J. Ben, Vilt, S.G., Rivera, J.L., Jennings, G.K., and McCabe, C., Langmuir 28, 14218 (2012).CrossRefGoogle Scholar
Tanaka, M., Sawaguchi, T., Sato, Y., Yoshioka, K., and Niwa, O., Langmuir 27, 170 (2011).CrossRefGoogle Scholar
Mahapatro, A., Johnson, D.M., Patel, D.N., Feldman, M.D., Ayon, A.A., and Agrawal, C.M., Langmuir 22, 901 (2006).CrossRefGoogle Scholar
Makihata, M., Tanaka, S., Muroyama, M., Matsuzaki, S., Yamada, H., Nakayama, T., Yamaguchi, U., Mima, K., Nonomura, Y., Fujiyoshi, M., and Esashi, M., J. Micromechanics Microengineering 21, 085002 (2011).CrossRefGoogle Scholar
Niklaus, F., Andersson, H., Enoksson, P., and Stemme, G., Sensors Actuators A Phys. 92, 235 (2001).CrossRefGoogle Scholar
Gupta, M., Kapur, V., Pinkerton, N.M., and Gleason, K.K., Chem. Mater. 20, 1646 (2008).CrossRefGoogle Scholar
Xu, J. and Gleason, K.K., Chem. Mater. 22, 1732 (2010).CrossRefGoogle Scholar
Dirk, H., Hossain, M.M., Korner, E., and Balazs, D., Plasma Process. Polym. 4, 229 (2007).Google Scholar
Suni, T., Henttinen, K., Suni, I., and Makinen, J., J. Electrochem. Soc. 149, 348 (2002).CrossRefGoogle Scholar
Gupta, V., Madaan, N., Jensen, D.S., Kunzler, S.C., and Linford, M.R., Langmuir. 29, 3604 (2013).CrossRefGoogle Scholar
Iyer, K.S., Zdyrko, B., Malz, H., Pionteck, J., and Luzinov, I., Macromolecules 36, 6519 (2003).CrossRefGoogle Scholar
Chan, K. and Gleason, K.K., Langmuir 21, 8930 (2005).CrossRefGoogle Scholar
Ashurst, W.R., Carraro, C., and Maboudian, R., IEEE Trans. Device Mater. Reliab. 3, 173 (2003).CrossRefGoogle Scholar
Maiti, S. and Geubelle, P.H., Eng. Fract. Mech. 72, 691 (2005).CrossRefGoogle Scholar