Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T01:11:56.048Z Has data issue: false hasContentIssue false

The Influence of Water Absorbed in Grain Boundary of a Polycrystalline NiO Layer on the Memory Characteristics of Pt/NiO/Pt Resistive Random Access Memory (ReRAM)

Published online by Cambridge University Press:  19 August 2014

Ryosuke Ogata
Affiliation:
Tottori University, Tottori 680-8550
Masataka Yoshihara
Affiliation:
Tottori University, Tottori 680-8550
Naohiro Murayama
Affiliation:
Tottori University, Tottori 680-8550
Satoru Kishida
Affiliation:
Tottori University, Tottori 680-8550 Tottori University Electronic Display Research Center, Tottori, 680-8550
Kentaro Kinoshita
Affiliation:
Tottori University, Tottori 680-8550 Tottori University Electronic Display Research Center, Tottori, 680-8550
Get access

Abstract

We focused on the presence of water absorbed in the grain boundary of a polycrystalline transition metal oxide (TMO) film in an EL/poly-TMO/EL structure. The effect of supplying water to resistive random access memories (ReRAMs) of Pt/NiO/Pt structure on switching voltages and data retention characteristics was investigated. As a result, switching voltages were decreased by supplying water and reset switching was confirmed to be strongly induced by supplying water even at room temperature without applying voltage. These results suggest that water enhances resistive switching effect by providing reducing species and oxidizing species respectively such as H+ and OH-.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sawa, A., materials today 11, 6 (2008).CrossRefGoogle Scholar
Back, I. G., Park, C. J., Ju, H., Seong, D. J., Ahn, H. S., Kim, J. H., Yang, M. K., Song, S. H., Kim, E. M., Park, S. O., Park, C. H., Song, C. W., Jeong, G. T., Choi, S., Kang, H. K. and Chung, C., Tech. Dig. - Int. Electron Devices Meet. 2011, 737.Google Scholar
Liu, T. -Y., Yan, T. H., Scheuerlein, R., Chen, Y., Lee, J. K., Balakrishnan, G., Yee, G., Zhang, H., Yap, A., Ouyang, J., Sasaki, T., Addepalli, S., Al-Shamma, A., Chen, C. -Y., Gupta, M., Hilton, G., Joshi, S., Kathuria, A., Lai, V., Masiwal, D., Matsumoto, M., Nigam, A., Pai, A., Pakhale, J., Siau, C. H., Wu, X., Yin, R., Peng, L., Kang, J. Y., Huynh, S., Wang, H., Nagel, N., Tanaka, Y., Higashitani, M., Minvielle, T., Gorla, C., Tsukamoto, T., Yamaguchi, T., Okajima, M., Okamura, T., Takase, S., Hara, T., Inoue, H., Fasoli, L., Mofidi, M., Shrivastava, R. and Quader, K., ISSCC Dig. Tech. Papers, pp. 210211, Feb, 2013.Google Scholar
Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M. and Sugiyama, Y., Tech. Dig. - Int Electron Devices Meet. 2007, 767.Google Scholar
Hosoi, Y., Tamai, Y., Ohnishi, T., Ishihara, K., Shibuya, T., Inoue, Y., Yamazaki, S., Nakano, T., Ohnishi, S., Awaya, N., Inoue, I. H., Shima, H., Akinaga, H., Takagi, H., Akoh, H., and Tokura, Y., Tech. Dig. - Int. Electron Devices Meet. 2006, 793.Google Scholar
Gao, B., Zhang, H. W., Yu, S., Sun, B., Liu, L. F., Liu, X. Y., Wang, Y., Han, R. Q., Kang, J. F., Yu, B. and Wang, Y. Y., Symposium on VLSI Technology Digest of Technical Papers 30, (2009).Google Scholar
Nardi, F., Ielmini, D., Cagli, C., Spiga, S., Fanciulli, M., Goux, L., Wouters, D. J., Solid State Electron (2010).Google Scholar
Ahn, S. E., Lee, M. J., Park, Y., Kang, B. S., Lee, C. B., Kim, K. H., Seo, S., Suh, D. S., Kim, D. C., Hur, J., Xianyu, W., Stefanovich, G., Yin, H., Yoo, I. K., Lee, J. H., Park, J. B., Baek, I. G. and Park, B. H., Adv. Mater. 20, 924 (2008).CrossRefGoogle Scholar
Gibbons, J. F. and Beadle, W. E., Solid-State Electronics 7, 785 (1964).CrossRefGoogle Scholar
Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., Kim, H. J., Hwang, C. S., Szot, K., Waser, R., Reichenberg, B. and Tiedke, S., J. Appl. Phys. 98, 033715 (2005).CrossRefGoogle Scholar
Kim, K. M., Choi, B. J. and Hwang, C. S., Appl. Phys. Lett. 90, 242906 (2007)CrossRefGoogle Scholar
Cagli, C., Ielmini, D., Nardi, F. and Lacatia, A. L., IEEE Electron Device Lett., (2008)Google Scholar
Goux, L., Czarnecki, P., Chen, Y. Y., Pantisano, L., Wang, X. P., Degraeve, R., Govoreanu, B., Jurczak, M., Wouters, D.J. and Altimine, L., Appl. Phys. Lett. 97, 243509 (2010).CrossRefGoogle Scholar
Goux, L., Degraeve, R., Meersschaut, J., Govoreanu, B., Wouters, D. J., Kubicek, S., and Jurczak, M., J. Appl. Phys. 113, 054505 (2013)CrossRefGoogle Scholar
Rodriguez, J. A., Hanson, J. C., Frenkel, A. I., Kim, J. Y. and Perez, M., J. Am. Chem. Soc. 124, 346 (2002).CrossRefGoogle Scholar
Jeangros, Q., Hansen, T. W., Wagner, J. B., Damsgaard, C. D., Dunin-Borkowski, R. E., Hebert, C., Van herle, J. and Hessler-Wyser, A., J. Mater. Sci. 48 2893 (2013).CrossRefGoogle Scholar
Baranova, E. A., Cally, A., Allagui, A., Ntais, S. and Wuthrich, R., Chimie, C. R.. 16, 28 (2013).Google Scholar