Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T20:01:10.174Z Has data issue: false hasContentIssue false

InGaAs/GaAs Strained-Layer QW Vertical Cavity Surface Emitting Laser Structures grown on GaAs (311)A Substrates by MBE

Published online by Cambridge University Press:  10 February 2011

M. Takahashi
Affiliation:
ATR Optical and Radio Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 61.9-02 JAPAN
P. Vaccaro
Affiliation:
ATR Optical and Radio Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 61.9-02 JAPAN
K. Fujita
Affiliation:
ATR Optical and Radio Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 61.9-02 JAPAN
T. Watanabe
Affiliation:
ATR Optical and Radio Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 61.9-02 JAPAN
Get access

Abstract

We report the crystal growth conditions and lasing characteristics of InGaAs-GaAs strained-layer quantum well vertical cavity surface emitting lasers (VCSELs) grown on GaAs(311)A substrates by molecular beam epitaxy. A significantly smooth surface and high reflectivity of more than 99 % were achieved. Very flat and dislocation-free AlAs/GaAs hetero-interfaces were obtained. Furthermore, a very low threshold of 5.5 mA and current density of 270 A/cm2 have been achieved for the first time under CW operation at room temperature. In addition, we demonstrate stable polarization characteristics at high currents. These results are believed to be a consequence of both the predicted high gain and anisotropic gain distribution on the (311) surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1 ] Hayakawa, T., Kondo, M., Suyama, T., Takahashi, K., Yamamoto, S., and Hijikata, T., J. Appl. Phys. 26, L302 (1987).Google Scholar
[2] Fischer, R. J. and Vakhshoori, D., J. Vac. Sci. Technol. B 10, 986 (1992)Google Scholar
[3] Smith, D. L. and Mailhiot, C., J. Appl. Phys. 63, 2717 (1988)Google Scholar
[4] Ohtoshi, T., Kuroda, T., Niwa, A., and Tsuji, S., Appl. Phys. Lett. 65, 1886 (1994).Google Scholar
[5] Henderson, R. H. and Towe, E., J. Appl. Phys. 78, 2447 (1995).Google Scholar
[6] Decai Sun, Elias Towe, Paul Ostdiek, H., Grantham, Jeffery W., and Vansuch, Gregory. J., IEEE J. Selected Topics in Quantun Electron. 1, 674 (1995).Google Scholar
[7] Shimizu, M., Mukaihara, T., Baba, T., Koyama, F., and Iga, K., Jpn. J. Appl. Phys. 30, 1015 (1991).Google Scholar
[8] Mukaihara, T., Koyama, F., and Iga, K., Jpn. J. Appl. Phys. 31, 1389 (1992).Google Scholar
[9] Choquette, K. D., Lear, K. L., Leibenguth, R. E., and Asom, M. T., Abstracts of 51 st Annu. Devices Res. Conf., Univ. of California, Santa Barbara, CA, June 2123, 1993.Google Scholar
[10] Yamamoto, Teiji, Inai, Makoto, Takebe, Toshihiko, and Watanabe, Toshihide, J. Vac. Sci. Technol. A, 11, 631 (1993).Google Scholar
[11] Tsutsui, K., Mizukami, H., Ishiyama, O., Nakamura, S., and Furukawa, S., Jpn. J. Appl. Phys. 29, 468 (1990).Google Scholar
[12] Yoo, H. M., Ohuchi, F. S., and Stoebe, T. G., J. Vac. Sci. Technol. B 11, 542 (1993).Google Scholar
[13] Takeuchi, T., Muraki, K., Hanamaki, Y., Fukatsu, S., Yamada, N., Ogasawara, N., Mikoshiba, N., and Shiraki, Y., J. Crystal Growth 150, 1338 (1995)Google Scholar
[14] Sato, Kenji, Fahy, Michael R., and Joyce, Bruce A., Jpn. J. Appl. Phys. 33, L905 (1994).Google Scholar
[15] Kaminska, M., Weber, Z. -L., Weber, E. R., George, T., Kortwright, J. B., Smith, F. W., Tsaur, B. -Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989)Google Scholar