Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T03:58:02.336Z Has data issue: false hasContentIssue false

In-Situ Heavy as Doping in Si Selective Epitaxial Growth

Published online by Cambridge University Press:  21 February 2011

Y. Ohshita
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 34 Miyukigaoka Tsukuba, Ibaraki, 305, Japan
H. Kitajima
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 1120 Shimokuzawa Sagamihara, Kanagawa, 229, Japan
Get access

Abstract

Role of in-situ heavy As doping in Si selective growth is studied using the SiH2Cl2/H2/HCl/AsH3 gas system. By increasing AsH3 flow rate, the growth rate decreases in proportion to In (AsH3 flow rate). This result is explained well using a Frumkin-Temkin adsorption model. The As concentrations in grown films depend on surface orientation. Moreover, the maximum As concentration is about ten times lower than the solubility limit at a given temperature. These results are able to be explained qualitatively, if equilibrium concentrations of impurities at the Si(100), the Si(111), and the bulk are assumed to be different from one another, and that the concentration at the surface is frozen in the grown film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Joyce, B.D. and Baldrey, J.A., Nature, 195, 485 (1962)CrossRefGoogle Scholar
[2] Jackson, D.M. Jr, Trans. Met. Soc. AIME, 233, 596 (1965)Google Scholar
[3] Alexander, E.G. and Runyan, W.R., Trans. Met. Soc. AIME, 236, 284 (1967)Google Scholar
[4] Oldham, W.G. and Holmstrom, R., J. Electrochem. Soc, 114, 381 (1967)Google Scholar
[5] Dumin, D.J., J. Cryst. Growth, 8, 33 (1971)Google Scholar
[6] Rai-Choudhury, P. and Schroder, D.K., J. Electrochem. Soc, 118, 107 (1971)Google Scholar
[7] Smeltzer, R.K., J. Electrochem. Soc. 122, 1666(1975)Google Scholar
[8] Tanno, K., Endo, N., Kitajima, H., Kurogi, Y. and Tsuya, H., Japan J. Appl. Phys., 21, L564(1982)Google Scholar
[9] Liaw, H.M., Rose, J. and Fejes, P.L., Solid State Technol., 135 (May 1984)Google Scholar
[10] Jastrzebski, L., Corboy, J.F., McGinn, J.T. and Pagliano, R. Jr, J. Electrochem. Soc., 130, 1571(1983)Google Scholar
[11] Ishitani, A., Kitajima, H., Tanno, K. and Tsuya, H., Microelectronics Engineering, 4, 3 (1986)Google Scholar
[12] Hsieh, T.Y., Chun, H.G. and Kwong, D.L., Appl. Phys. Lett., 55, 2408 (1989)CrossRefGoogle Scholar
[13] Hsieh, T.Y., Chun, H.G., Kwong, D.L. and Spratt, D.B., Appl. Phys. Lett., 56, 1778 (1990)Google Scholar
[14] Ohshita, Y. and Kitajima, H., J. Appl. Phys., 70, 1871 (1991)CrossRefGoogle Scholar
[15] Porter, A.S. and Tompkins, C., Proc. Roy. Soc., A217, 544 (1953)Google Scholar
[16] Emmett, P.H. and Brunauer, S., J. Am. Chem. Soc., 56, 35 (1934)Google Scholar
[17] Frumkin, A.N. and Shyrgin, A.I., Acta Physiconchimica. URSS, 3, 791 (1935)Google Scholar
[18] Ishitani, A., Takada, T. and Ohshita, Y., J. Appl. Phys., 63, 390 (1988)Google Scholar
[19] Ohshita, Y., Ishitani, A. and Yakada, T., Phys. Rev. B, 41, 12720 (1990)Google Scholar
[20] Ohshita, Y., Ishitani, A. and Takada, T., J. Cryst. Growth, 108, 499 (1991)Google Scholar
[21] Trumbore, F.A., Bell System Tech. J., 39, 205 (1960)Google Scholar
[22] Tsai, M.Y., Morehead, F.F., Baglin, J.E.E., and Michel, A.E., J. Appl. Phys., 52, 3230 (1980)CrossRefGoogle Scholar