Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T07:11:38.035Z Has data issue: false hasContentIssue false

In-Situ Processing of Silicon Dielectrics by Rapid Thermal Processing: Cleaning, Growth, and Annealing

Published online by Cambridge University Press:  28 February 2011

J. Nulman*
Affiliation:
AG Associates, 1325 Borregas, Ave., Sunnyvale, CA 94089.
Get access

Abstract

The in-situ processing of silicon dielectrics by rapid thermal processing (RTP) is described. RTP includes here three basic sequentially performed processes: wafer cleaning, oxidation and annealing. The insitu cleaning allows for reduction of chemical and native oxides and silicon surface chemical polish, resulting in interface density of states as low as 5×l09 cm-2eV-1. Kinetics of oxide growth indicates an activation energy of 1.4 eV for the initial linear oxidation rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nulman, J., Krusius, J.P., A. Gat, IEEE Elec. Dev. Lett., EDL-6, 205 (1985).Google Scholar
2. Weinberg, Z.A., Young, D.R., Calise, J.A., Cohen, S.A., DeLuca, J.C., Deline, V.R., App. Phys. Lett., 45(11), 1204 (1984).Google Scholar
3. Nulman, J., Krusius, J.P., Rathbun, L., IEEE Int. Elec. Dev. Meet. Tech. Dig., 1984, 169.Google Scholar
4. Moslehi, M.M., Shatas, S.C., Saraswat, K.C., Proc. Fifth Int. Symp. on Silicon Materials Science and Technology, The Electrochem. Soc., 86–4, 379 (1986).Google Scholar
5. Hori, T., Naito, Y., Iwasaki, H., Esaki, H., IEEE Elec. Dev. Lett., EDL-7, 669 (1986).Google Scholar
6. Nulman, J., Scarpulla, J., Mele, T.C., Krusius, J.P., IEEE Int. Elec. Dev. Meet. Tech. Dig., 1985, 376.Google Scholar
7. Maury, A., Kim, S.C., Manocha, A., Oh, K.H., Kostelnick, D., Shive, S., IEEE Int. Elec. Dev. Meet. Tech. Dig., 1986, 676.Google Scholar
8. Flowers, D., Nulman, J., Krusius, J.P., These proceedings.Google Scholar
9. Nulman, J., Proc. First Int. Symp. on ULSI Science and Tech., The Electrochem. Soc., 1987, in press.Google Scholar
10. Gelain, C., Cassuto, A., LeGoff, P., Oxid. Met., 3, 139 (1971).Google Scholar
11. Gulbransen, E.A., Jansson, S.A., 4, 181 (1972).Google Scholar
12. Lang, G.A., Stavish, T., RCA Rev.,Oxid. Met. 24, 488 (1963).Google Scholar
13. Bloem, J., Giling, L.J., in “Current Topics in Materials Science,” Vol. 1, Kaldis, E., editor, Chap. 4, North Holland Publishing Co., Amsterdam (1978).Google Scholar
14. Kuijer, T.J.M., Giling, L.J., Bloem, J., J. Cryst. Growth, 22, 29 (1974).Google Scholar
15. van der Putte, P., Giling, L.J., Bloem, J., Oxid. Met., 41, 133 (1977).Google Scholar
16. Shepherd, W.H., J. Electrochem. Soc., 112, 988 (1965).Google Scholar
17. Nicollian, E.H., Bruce, J.R., in “MOS Physics and Technology,” Chap. 8, John Wiley & Sons, NY (1982).Google Scholar
18. Deal, B.E., Grove, A.S., J. Appl. Phys., 36, 3770 (1965).Google Scholar
19. Massoud, H.Z., Duke Univ., Durham, NC 27706, Private communication.Google Scholar