Skip to main content Accessibility help

Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals

  • N. Koch (a1), J. Ghijsen (a2), R. Ruiz (a3), J. Pflaum (a4), R. L. Johnson (a5), J.-J. Pireaux (a2), J. Schwartz (a6) and A. Kahn (a1)...


A number of low workfunction metals (samarium, alkali metals) were deposited onto vacuum sublimed thin films of pentacene. The change in the valence electronic structure of the organic material was studied by in situ ultraviolet photoemission spectroscopy (UPS). Alkali metal intercalation leads to the appearance of a new photoemission feature within the pentacene energy gap, due to a charge transfer from the alkali atoms to the lowest unoccupied molecular orbital (LUMO) of the organic material. The energy spacing between this emission feature and the relaxed highest occupied molecular orbital (HOMO) of the pristine molecule is 1 eV. From X-ray photoemission spectroscopy core level analysis, we estimate a concentration ratio of two alkali metal atoms per pentacene molecule at maximum intercalation level, leading to a complete filling of the LUMO. This is consistent with the results from UPS that the new emission is always observed below the Fermi-level. Samarium is found to exhibit a more subtle interaction with pentacene: the molecular orbitals remain almost unperturbed upon Sm deposition. The resulting energy level alignment at this interface seems to be very favorable for the injection of electrons from Sm into pentacene, as the HOMO-onset is found at 1.8 eV below the metal Fermi edge. This value is close to the 2.2 eV HOMO-LUMO gap of pentacene measured by UPS and inverse photoemission spectroscopy, thus corresponding to a small electron injection barrier.



Hide All
1. Tang, C. W. and Slyke, S. A. v., Appl. Phys. Lett. 51, 913 (1987).
2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackey, K., Friend, R. H., Burns, P. L., and Holmes, A. B., Nature 347, 539 (1990).
3. Bulovic, V., Gu, G., Burrows, P. E., Forrest, S. R., and Thompson, M. E., Nature 380, 29 (1996).
4. Schön, J. H., Dodabalapur, A., Kloc, C., and Batlogg, B., Science 290, 963 (2000).
5. Dimitrakopoulos, C. D., Brown, A. R., and Pomp, A., J. Appl. Phys. 80, 2501 (1996).
6. Schön, J. H., Berg, S., Kloc, C., and Batlogg, B., Science 287, 1022 (2000).
7.Y Harada, Ozaki, H., Ohno, K., Phys. Rev. Lett 52, 2269 (1984).
8. Ramsey, M. G., Steinmuller, D., and Netzer, F. P., Phys. Rev. B 42, 5902 (1990).
9. Fahlman, M., Beljonne, D., Logdlund, M., Friend, R. H., Holmes, A. B., Bredas, J. L., and Salaneck, W. R., Chem. Phys. Lett. 214, 327 (1993).
10. Greczynski, G., Fahlman, M., and Salaneck, W. R., J. Chem. Phys. 113, 2407 (2000).
11. Shen, C., Kahn, A., and Schwartz, J., J. Appl. Phys. 89, 449 (2001).
12. Parthasarathy, G., Shen, C., Kahn, A., and Forrest, S. R., J. Appl. Phys. 89, 4986 (2001).
13. Johnson, R. L. and Reichardt, J., Nucl. Instr. Methods 208, 719 (1983).
14. Silinsh, E. A., Organic Molecular Crystals (Springer, Berlin, 1980).
15. Koch, N., Leising, G., Yu, L. M., Rajagopal, A., Pireaux, J. J., and Johnson, R. L., J. Vac. Sci. Technol. 18, 295 (2000).
16. Salaneck, W. R. and Brédas, J.-L., Adv. Mater. 8, 48 (1996).
17. Koch, N., Rajagopal, A., Ghijsen, J., Johnson, R. L., Leising, G., and Pireaux, J. J., J. Phys. Chem. B 104, 1434 (2000).
18. Iucci, G., Xing, K., Lögdlund, M., Fahlman, M., and Salaneck, W. R., Chem. Phys. Lett. 244, 139 (1995).
19. Koch, N., Zojer, E., Rajagopal, A., Ghijsen, J., Johnson, R. L., Leising, G., and Pireaux, J. J., Adv. Funct. Mater. 11, 51 (2001).
20. Ozaki, H., J. Chem. Phys. 113, 6361 (2000).
21. Dannetun, P., Lögdlund, M., Fredriksson, C., Lazzaroni, R., Fauquet, C., Stafström, S., Spangler, C. W., Brédas, J. L., Salaneck, W. R., J. Chem. Phys. 100, 6765 (1994).
22. Salaneck, W. R., Stafström, S., and Brédas, J.-L., Conjugated polymer surfaces and interfaces; electronic and chemical structure of interfaces for polymer light emitting devices (Cambridge Univ. Press, Cambridge, 1996).
23. Campbell, R. B., Trotter, J., and Robertson, J. M., Acta Crystallographica 14, 705 (1961).
24. Schuerlein, T. J., Schmidt, A., Lee, P. A., Nebesny, K. W., and Armstrong, N. R., Jpn. J. Appl. Phys. Part 1 34, 3837 (1995).
25. Oji, H., Ito, E., Furuta, M., Kajikawa, K., Ishii, H., Ouchi, Y., and Seki, K., J. Electron Spectrosc. Relat. Phenom. 101–103, 517 (1999).
26. Onoda, M., Tada, K., and Nakayama, H., J. Appl. Phys. 86, 2110 (1999).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed