Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T12:50:20.906Z Has data issue: false hasContentIssue false

Intercalation Processes in Cobalt Substituted Nickel Oxyhydroxides

Published online by Cambridge University Press:  28 February 2011

Claude Delmas*
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Get access

Abstract

Chimie douce reactions (hydrolysis and reduction) from layered oxides : NaNiO2, NaxCoO2 and NaNil-xCoxO2 lead to numerous oxyhydroxides and hydroxides which differ by the composition of the intersheet space.

According to the experimental conditions of the hydrolysis reaction, the oxyhydroxides can be unhydrated or intercalated with one or two layers of water molecules. From the most hydrated phases, the other ones can be obtained by chemical, thermal and even mechanical treatment.

The reduction of Co-substituted nickel oxyhydroxides leads to hydroxides in which nickel and cobalt ions are respectively divalent and trivalent. In order to compensate the excess of positive charge in the (Ni, Co)O2 sheet, anions (OH-, CO32-, SO42-, NO3-) are inserted in the Van der Waals gap.

For the highest anion amounts, well ordered α*-type materials are obtained. Water molecules are simultaneously inserted in the interslab space. Their structure is strongly related to the hydrotalcite one. When the amouit of anions in the intersheet space is not sufficient, interstratified materials are obtained. In this case the (Ni,Co)(OH)2 slabs are separated by a layer of CO32- anions and water molecules (α*-type) or by an empty Van der Waals gap (β(II)-type). The amount of α*-type planes in the structure increases with the cobalt amount. All these materials have been characterized by IR spectroscopy which allows to detect the existence of two types of O-H bonds (free in α*-type plane or hydrogen bonded in ²(II)-type plane).

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goodenough, J.B., Manthiram, A., James, A.C.W.P. and Strobel, P., Proceeding MRS Symposium Solid State Ionics, Nazri, G., Huggins, R. and Shriver, D., Ed., 135, 391 (1988).Google Scholar
2. Mizushima, K., Jones, P.C., Wiseman, P.J. and Goodenough, J.B., Mat. Res. Bull., 12, 785 (1980).Google Scholar
3. Tarascon, J.M. and Colson, S., Proceeding MRS Symposium Solid State Ionics, Nazri, G., Huggins, R. and Shriver, D., Ed., 135, 421 (1988).Google Scholar
4. Delmas, C., J. Mat. Sc. and Eng., B3, 97 (1989).Google Scholar
5. Delmas, C., Braconier, J.J., Maazaz, A. and Hagenmuller, P., Rev. Chim. Min., 19, 343 (1982).Google Scholar
6. Oliva, P., Leonardi, J., Laurent, J.F., Delmas, C., Braconnier, J.J., Figlarz, M., Fievet, F., Guibert, A. de, J. Power Sources, 8, 229 (1982).Google Scholar
7. Braconnier, J.J., Delmas, C., Fouassier, C., Figlarz, M. and Hagenmuller, P., Rev. Chim. Min., 21,496 (1984).Google Scholar
8. Delmas, C., Borthomieu, Y., Faure, C., Delahaye, A. and Figlarz, M., Solid State Ionics, 32/33, 104 (1989).Google Scholar
9. Delmas, C., Braconnier, J.J., Fouassier, C. and Hagenmuller, P., Solid State Ionics, /4, 209 (1981).Google Scholar
10. Py, M.A. and Haering, R.R., Can. J. Phys., 61.76 (1983).Google Scholar
11. Lerf, A. and Schbllhorn, R., Inorg. Chem., 16, 2950 (1977).Google Scholar
12. Steffen, R. and Schöllhom, R., Solid State Ionics, 22, 31 (1986).Google Scholar
13. Delmas, C., Braconnier, J.J., Borthomieu, Y. and Hagenmuller, P., Mat. Res. Bull., 22, 741 (1987).Google Scholar
14. Waals, S.A. de and Viljoen, E.A., Am. Miner., 56, 1077 (1971).Google Scholar
15. Mendiboure, A. and Schöllhorn, R., Rev. Chim. Miner., 23, 819 (1986).Google Scholar
16. Frondel, C.F., Am. Miner., 26, 295 (1951).Google Scholar
17. Faure, C., Borthomieu, Y., Delmas, C. and Fouassier, M., J. Power Sources (submitted).Google Scholar
18. Nakamoto, K.Infrared Spectra of Inorganic and Coordination Compounds”, J. Wiley, New York (1963).Google Scholar
19. Malki, K. El, Roy, A. de and Besse, J.P., Eur. J. Sol. State Inorg. Chem., 26, 339 (1989).Google Scholar
20. Brown, G.The X-ray identification of crystal structures and clay materials”, Mineralogical Society, London (1972).Google Scholar
21. Hendricks, S.B. and Teller, E., J. Chem. Phys., 10, 147 (1942).Google Scholar