Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T12:38:53.726Z Has data issue: false hasContentIssue false

Interface and Electrical Properties of Atomic-layer-deposited HfAlO Gate Dielectric for N-channel GaAs MOSFETs

Published online by Cambridge University Press:  31 January 2011

Rahul Suri
Affiliation:
rsuri@ncsu.edu, North Carolina State University, Electrical and Computer Engineering, Raleigh, North Carolina, United States
Daniel J Lichtenwalner
Affiliation:
djlichte@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Veena Misra
Affiliation:
vmisra@ncsu.edu, North Carolina State University, Electrical and Computer Engineering, Raleigh, North Carolina, United States
Get access

Abstract

The interface and electrical properties of HfAlO dielectric formed by atomic layer deposition (ALD) on sulfur-passivated GaAs were investigated. X-ray photoelectron spectroscopy (XPS) revealed the absence of arsenic oxides at the HfAlO/GaAs interface after dielectric growth and post-deposition annealing at 500 °C. A minimal increase in the amount of gallium oxides at the interface was detected between the as-deposited and annealed conditions highlighting the effectiveness of HfAlO in suppressing gallium oxide formation. An equivalent oxide thickness (EOT) of ∼ 2 nm has been achieved with a gate leakage current density of less than 10-4 A/cm2. These results testify a good dielectric interface with minimal interfacial oxides and open up potential for further investigation of HfAlO/GaAs gate stack properties to determine its viability for n-channel MOSFETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Suri, R., Lee, B., Lichtenwalner, D.J., Biswas, N., and Misra, V., APL 93, 193504(2008).Google Scholar
2 Koveshnikov, S., Tsai, W., Ok, I., Lee, J.C., Torkanov, V., Yakimov, M., and Oktyabrsky, S., Appl. Phys. Lett. 88, 22106 (2006).Google Scholar
3 Kambhampati, R., Koveshnikov, S., Tokranov, V., Yakinov, M., Moore, R., Tsai, W., and Oktyabrsky, S., ECS Transactions, 11 (4), 431439 (2007).Google Scholar
4 Kim, Hyoung-Sub, Ok, Injo, Zhang, Manhong, Zhu, F., Park, S., Yum, J., Zhao, Han, and Lee, Jack C., Appl. Phys. Lett. 91, 042904 (2007).Google Scholar
5 Zhao, H., Kim, H.-S., Zhu, F., Zhang, M., OK, I., Park, S., Yum, J.H., and Lee, J. C., Appl. Phys. Lett. 91, 172101 (2007).Google Scholar
6 Suri, R., Lichtenwalner, D. J., and Misra, V., APL 92, 243506 (2008).Google Scholar
7 Lichtenwalner, D. J., Suri, R., and Misra, V., Mater. Res. Soc. Symp. Proc. Vol. 1073, (2008).Google Scholar
8 Kim, Hyun-Jo, Kim, Hyeong-Do, ‘Fitt’ program for XPS curve analysis, http://escalab.snu.ac.kr/~berd/Fitt/fitt.html, accessed July 2008.Google Scholar
9 Hinkle, C. L., Sonnet, A. M., Vogel, E. M., McDonnell, S., Hughes, G. J., Milojevic, M., Lee, B., Aguirre-Tostado, F. S., Choi, K. J., Kim, H. C., Kim, J., and Wallace, R. M., Appl. Phys. Lett. 92, 071901 (2008)Google Scholar
10 Shahrjerdi, D., Tutuc, E., and Banerjee, S. K., Appl. Phys. Lett. 91, 063501 (2007)Google Scholar
11 Milojevic, M., Hinkle, C. L., Aguirre-Tostado, F. S., Kim, H. C., Vogel, E. M., Kim, J., and Wallace, R. M., Appl. Phys. Lett. 93, 252905 (2008)Google Scholar
12 Karpov, I. et al, Vac, J.. Sci. & Tech. B: Microelectronics and Nanometer Structures, 13, 1933 (1995)Google Scholar
13 Hinkle, C. L., Milojevic, M., Brennan, B., Sonnet, A. M., Aguirre-Tostado, F. S., Hughes, G. J., Vogel, E. M., and Wallace, R. M., Appl. Phys. Lett. 94, 162101 (2009)Google Scholar