Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-15T04:11:12.228Z Has data issue: false hasContentIssue false

Interface Recombination and Threshold Current in Grinsch-QW ALGaAs/GaAs Laser Diodes

Published online by Cambridge University Press:  26 February 2011

K. Xie
Affiliation:
Department of Electrical and Computer Engineering, State university of New York at Buffalo, Buffalo NY 14260
H. M. Kim
Affiliation:
Department of Electrical and Computer Engineering, State university of New York at Buffalo, Buffalo NY 14260
C. R. Wie
Affiliation:
Department of Electrical and Computer Engineering, State university of New York at Buffalo, Buffalo NY 14260
J. A. Varriano
Affiliation:
Institute of Optics, University of Rochester, Rochester, NY 14627
G. W. Wicks
Affiliation:
Institute of Optics, University of Rochester, Rochester, NY 14627
Get access

Abstract

A series of Graded-Index Waveguide Separate-Confinement Heterostructure Quantum Well (GRINSCH-QW) laser diodes were grown by MBE at the systematically varied substrate temperatures. The threshold current of laser diodes were found to depend strongly on the growth temperature. The structure and electrical characteristics of the laser diodes were studied by double-crystal x-ray diffraction, I-V-T, C-V and deep level transient spectroscopy (DLTS). The interface recombination is found to be the dominant carrier transport process in the high threshold current laser diodes and is closely related to the presence of the high concentration of deep traps and interface states. In the low threshold current laser diodes, diffusion process is found to be the dominant carrier transport process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsang, W. T., in “The Technology and Physics of Molecular Beam Epitaxy” ed. by Parker, E.H.C.-, (Plenum, New York) 1985, p. 467.Google Scholar
2. Tsang, W. T., Reinhar, F. K. and Ditzenberger, J. A., Appl. Phys. Lett. 36 118 (1980).Google Scholar
3. Wicks, G. W., Wang, W. I., Wood, C. E. C., Eastman, L. F. and Rathbun, L., J. Appl. Phys. 52 5792 (1981).Google Scholar
4. Weisbuch, C., Dingle, R., Petroff, P. M., Gossard, A. C. and Wiegmann, W., Appl. phys. Lett. 38 840 (1981).Google Scholar
5. Sun, Y. L., Fischer, R., Klein, M. V. and Morkoc, H., Thin Solid Films, 112 213 (1984).CrossRefGoogle Scholar
6. Iwata, H., Yokoyama, H., Sugimoto, M., Hamao, N., and Onabe, K., Appl. Phys. Lett. 54 2427 (1989).Google Scholar
7. Petroff, P. M., Weisbuch, C., Dingle, R., Gossard, A. C. and Wiegmann, W., Appl. Phys. Lett. 38 965 (1981).Google Scholar
8. Duggan, G., Ralph, H. I. and Elliott, R. J., Solid State Commun. 56 17 (1985)Google Scholar
9. Yu, L. S. and Wang, C. D., IEEE Trans. Electron Devices, ED–30 326 (1983).Google Scholar
10. Petroff, P. M., Miller, R. C., Gossard, A. C. and Wiegmann, W., Appl. Phys. Lett. 44 217 (1984).CrossRefGoogle Scholar
11. Chand, Naresh and Chu, S. N. G., Appl. Phys. Lett. 57 1796 (1990).CrossRefGoogle Scholar
12. Yamanaka, K., Naritsuka, S., Kanamoto, K., Minara, M. and Ishil, M., J. Appl. Phys. 61 5062 (1987).Google Scholar
13. Blood, P. and Harris, J. J., J. Appl. Phys. 56 993 (1984).CrossRefGoogle Scholar
14. McAfee, S. R., Lang, D. V. and Tsang, W. T., Appl. Phys. Lett. 40 520 (1982).Google Scholar
15. Yamanaka, K., Naritsuka, S., Manon, M., Yuasa, T., Nomura, Y., Mihara, M. and Ishi, M., I. Vac. Sci. Technol. B. 2 229 (1984).Google Scholar
16. Sze, S. M., Physics of Semiconductor Devices 2nd ed. (Wiley, New York 1981);Google Scholar
Chen, J. F. and Wie, C. R., J. Electron. Mater. 17 501 (1988).Google Scholar
17. Miller, W. A. and Olsen, L. C., IEEE Trans. Electron Devices ED–31 654 (1984).Google Scholar
18. Tan, K. L., Lundstrom, M. S. and Melloch, M. R., Appl. Phys. Lett. 48 428 (1986).Google Scholar