Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-16T00:27:13.127Z Has data issue: false hasContentIssue false

Interface Structures in Lateral Seeding Epitaxial Si on SiO2.

Published online by Cambridge University Press:  28 February 2011

Atsushi Ogura
Affiliation:
Fundamental Research Laboratories, NEC Corporation 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 213, Japan
Naoaki Aizaki
Affiliation:
Fundamental Research Laboratories, NEC Corporation 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 213, Japan
Hiroshi Terao
Affiliation:
Fundamental Research Laboratories, NEC Corporation 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 213, Japan
Get access

Abstract

Si/SiO2 interface structures found in three types of lateral seeding epitaxy (lateral solid phase epitaxy; LSPE, epitaxial lateral over growth; ELO, and laser annealing; LA) were studied with a high resolution transmission electron microscope. The (001) Si/SiO2 interface found in the LSPE was thought to have similar flatness as its initial SiO2 surface. In the twin region of the ELO, where the (221)T plang should be parallel to the substrate, the Si/SiO2 interface was sawtoothed with (111)T and {110)T micro-facets. The (001) Si/SiO2 interface in the LA was flatter than that in the LSPE and nO twins were observed. However, the (115) Si/SiO2 interface was saw-toothed. In this case, both (111) and (111) twin boundaries were observed, and (111) and (110) interfaces were atomically flat. A reaction between the Si and SiO2 is expected to occur at their interface, and the appearance of atomically flat interface or saw-toothed facets with low-index planes (which may be thought to have low interface energy with SiO2 ) may be possibly attributed to such reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kunii, Y., Tabe, M. and Kajiyama, K., J. Appl. Phys., 54, 2847 (1983).CrossRefGoogle Scholar
[2] Yamamoto, H., Ishiwara, H. and Furukawa, S., Jpn. J. Appl. Phys., 24, 411 (1985).CrossRefGoogle Scholar
[3] Rothman, R. D., Silversmith, D. J. and Burns, J. A., J. Electrochem. Soc., 129, 2303 (1982).CrossRefGoogle Scholar
[4] Kasai, N., Kimura, M., Endo, N., Ishitani, A. and Kitajima, H., Jpn. J. Appl. Phys., 26, 671 (1987).CrossRefGoogle Scholar
[5] Aizaki, N., Appl. Phys. Lett., 44, 686 (1984).CrossRefGoogle Scholar
[6] Sugahara, K., Kusunoki, S., Inoue, Y., Nishimura, T. and Akasaka, Y., J. Appl. Phys., 62, 4178 (1987).CrossRefGoogle Scholar
[7] Ohtake, K., Shirakawa, K., Koba, M., Awane, K., Ohta, Y., Azuma, D. and Miyata, S., IEDM Technical Digest, Los Angeles, 1986 pp.148151.Google Scholar
[8] Collinge, J. P., IEEE Electron Device Lett., EDL-7, 244 (1986).CrossRefGoogle Scholar
[9] Collinge, J. P. and Kamins, T. I., Electron. Lett., 23, 1162 (1987).CrossRefGoogle Scholar
[10] Ommen, A. H. van, Keek, B. H. and Viegers, M. P. A., Appl. Phys. Lett., 49, 1062 (1986).CrossRefGoogle Scholar
[113 Chan, P. H. and Mao, B. Y., Appl. Phys. Lett., 50, 152 (1987).CrossRefGoogle Scholar
[12] Kawarada, H., Ueno, T., Kunii, Y., Horiuchi, S. and Ohdomari, I., Jpn. J. Appl. Phys., 25, L814 (1986).CrossRefGoogle Scholar
[13] Kawarada, H., Ueno, T., Ohdomari, I. and Kunii, Y., J. Appl. Phys., 63, 2641 (1988).CrossRefGoogle Scholar
[14] Friedrich, J. A. and Neudeck, G. W., J. Appl. Phys., 64, 3538 (1988).CrossRefGoogle Scholar
[15) Tromp, R., Rubloff, G. W., Bulk, P. and LeGoues, F. K., Phys. Rev. Lett., 55, 2332 (1985).CrossRefGoogle Scholar
[16] Ponce, F. A., Yamashita, T. and Harn, S., Appl. Phys. Lett., 43, 1051 (1983).CrossRefGoogle Scholar
[17] Moller, H. J., Phil. Mag. A43, 1045 (1981).CrossRefGoogle Scholar