Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T17:35:01.414Z Has data issue: false hasContentIssue false

Intrinsic Stress in a-Germanium Films Deposited by RF-Magnetron Sputtering

Published online by Cambridge University Press:  22 February 2011

D. Fahnline
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
B. Yang
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
K. Vedam
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
R. Messier
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
L. Pilione
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Thin a-Ge films deposited by rf-magnetron sputtering undergo a change from compressive to tensile stress as the argon gas pressure is increased. Spectroscopic ellipsometry, neutron activation analysis, and a dual laser beam reflection technique were used to determine the film's void fraction content, Ar/Ge atomic percent, and stress, respectively. The results of these three measurements indicate that as the film's Ar/Ge content increases, the void fraction decreases and the intrinsic stress becomes compressive. These findings are consistent with currently accepted bombardment mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thornton, J.A. and Hoffman, D.W., J. Vac. Sci. Technol. 14, 164 (1977).10.1116/1.569113Google Scholar
2. Harper, J.E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.R., Nucl. Instr. and Meth. in Phys. Res. B 7/8 886 (1985).10.1016/0168-583X(85)90489-6Google Scholar
3. Windischmann, H., J. Appl. Phys. 62 1800 (1987).10.1063/1.339560Google Scholar
4. Window, B., Sharples, F., and Sawides, N., J. Vac. Sci. Technol. A 6, 2333 (1988).10.1116/1.575585Google Scholar
5. Este, G. and Westwood, W.D., J. Vac. Sci. Technol. A5, 1892 (1987).10.1116/1.574480Google Scholar
6. Huffman, G.L., Fahnline, D.E., Messier, R., and Pilione, L.J., submitted to J. Vac. Sci. Technol.Google Scholar
7. Muller, K.H., J. Appl. Phys. 62, 1796 (1987).10.1063/1.339559CrossRefGoogle Scholar
8. Pilione, L.J., Vedam, K., Yehoda, J.E., and Messier, R., Phys. Rev. B 35, 9368 (1987).10.1103/PhysRevB.35.9368Google Scholar
9. Yang, B., Pilione, L.J., Yehoda, J.E., Vedam, K., and Messier, R., Phys. Rev. B 36, 6206 (1987).10.1103/PhysRevB.36.6206Google Scholar
10. Connell, G.A.N., in Amorphous Semiconductors. Topics in Applied Physics, vol 36, edited by Bronsky, M.H. (Springer-Verlag, Berlin, 1985), p 73.Google Scholar
11. McMarr, P.J., Blanco, J.R., Vedam, K., Messier, R., and Pilione, L.J., Appl. Phys. Lett. 49, 328 (1986).10.1063/1.97157Google Scholar
12. Yehoda, J.E., Lindstrom, R.M., and Pilione, L.J., to be published.Google Scholar
13. Rossnagel, S.M., Gilstrap, P., and Rujkorakarn, R., J. Vac. Sci. Technol. 21, 1045 (1982).10.1116/1.571863Google Scholar
14. Flinn, P.A., Gardner, D.S., and Nix, W.D., IEEE Trans. on Electron Devices, ED-34, 689 (1987).10.1109/T-ED.1987.22981Google Scholar
15. Somekh, R.E., Vacuum 34, 987 (1984).10.1016/0042-207X(84)90183-0CrossRefGoogle Scholar
16. Motohiro, T. and Taga, Y., Thin Solid Films 112, 161 (1984).10.1016/0040-6090(84)90493-0Google Scholar