Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T15:29:31.142Z Has data issue: false hasContentIssue false

Investigation of the off-current in amorphous silicon thin film transistors for SiO2 and SiNx. gate insulators

Published online by Cambridge University Press:  10 February 2011

Jeong Hyun Kim
Affiliation:
LCD R&D center, LG Electronics Inc., Anyang, Kyungkido, 430-080, Korea
Woong Sik Choi
Affiliation:
LCD R&D center, LG Electronics Inc., Anyang, Kyungkido, 430-080, Korea
Chan Hee Hong
Affiliation:
LCD R&D center, LG Electronics Inc., Anyang, Kyungkido, 430-080, Korea
Hoe Sup Soh
Affiliation:
LCD R&D center, LG Electronics Inc., Anyang, Kyungkido, 430-080, Korea
Get access

Abstract

The off current behavior of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) with an atmospheric pressure chemical vapor deposition (APCVD) silicon dioxide (SiO2) gate insulator were investigated at negative gate voltages. The a-Si:H TFT with SiO2 gate insulator has small off currents and large activation energy (Ea) of the off current compared to the a-Si:H TFT with SiNx gate insulator. The holes induced in the channel by negative gate voltage seem to be trapped in the defect states near the a-Si:H/SiO2 interface. The interface state density in the lower half of the band gap of a-Si:H/SiO2 appears to be much higher than that for a-Si:H/SiNx.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fossum, J. G., Ortiz-Conde, A., Schijo, H., and Banerjee, S. K., IEEE Trans. Electron Devices, vol.32, No. 9, pp.1878 (1985)Google Scholar
[2] Ono, K., Aoyama, T., Konishi, N. and Miyata, K., IEEE Trans. Electron Devices, vol.39, No. 4, pp.792 (1992)Google Scholar
[3] Rodriguez, A., Moreno, E. G., Nijs, J. F. and Mertens, R. P., IEEE Trans. Electron Devices, vol.40, No. 5, pp. 938 (1993)Google Scholar
[4] De Groot, A. W., McGonigal, G. C., Thomson, D. J., and Card, H. C., J. Appl. Phys., vol.55, pp. 312 (1982)Google Scholar
[5] Possin, G. E., Mat. Res. Soc. Proc. Vol.219, 327 (1991)Google Scholar
[6] Globus, T., Shur, M. and Hack, M., Mat. Res. Soc. Symp. Proc., Vol.258, pp. 1013 (1992)Google Scholar
[7] Kim, J. H., Oh, E. Y. and Hong, C. H., J. Appl. Phys. Vol.76(11), pp.7601, (1994)Google Scholar
[8] Kim, S. K., Lee, K. S., Kim, J. H., Hong, C. H. and Jang, J., Int'l workshop on AMLCD, Tokyo, Japan, pp. 12 (1994)Google Scholar
[9] Yoon, J. K, Jang, Y. H., Kim, B. K., Choi, H. S., Ahn, B. C. and Lee, C., J. Non-Crystalline Solids, 164–166, 747 (1993)Google Scholar