Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T11:10:39.278Z Has data issue: false hasContentIssue false

Investigations of Metal Gate Electrodes on HfO2 Gate Dielectrics

Published online by Cambridge University Press:  28 July 2011

Jamie Schaeffer
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Sri Samavedam
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Leonardo Fonseca
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Cristiano Capasso
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Olubunmi Adetutu
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
David Gilmer
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Chris Hobbs
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Eric Luckowski
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Rich Gregory
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Zhi-Xiong Jiang
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Yong Liang
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Karen Moore
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Darrell Roan
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Bich-Yen Nguyen
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Phil Tobin
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Bruce White
Affiliation:
Motorola, Inc., Advanced Products Research and Development Laboratory Austin, TX 78721
Get access

Abstract

As traditional poly-silicon gated MOSFET devices scale, the additional series capacitance due to poly-silicon depletion becomes an increasingly large fraction of the total gate capacitance, excessive boron penetration causes threshold voltage shifts, and the gate resistance is elevated. To solve these problems and continue aggressive device scaling we are studying metal electrodes with suitable work-functions and sufficient physical and electrical stability. Our studies of metal gates on HfO2 indicate that excessive inter-diffusion, inadequate phase stability, and interfacial reactions are mechanisms of failure at source drain activation temperatures that must be considered during the electrode selection process. Understanding the physical properties of the metal gate – HfO2 interface is critical to understanding the electrical behavior of MOS devices. Of particular interest is Fermi level pinning, a phenomenon that occurs at metal – dielectric interfaces which causes undesirable shifts in the effective metal work function. The magnitude of Fermi level pinning on HfO2 electrodes is studied with Pt and LaB6 electrodes. In addition, the intrinsic and extrinsic contributions to Fermi level pinning of platinum electrodes on HfO2 gate dielectrics are investigated by examining the impact of oxygen and forming gas anneals on the work function of platinum-HfO2-silicon capacitors. The presence of interfacial oxygen vacancies or Pt-Hf bonds is believed to be responsible for a degree of pinning that is stronger than predicted from the MIGS model alone. Interface chemistry and defects influence the effective metal work function.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hori, T., Gate Dielectrics and MOS ULSIs, (Springer 1997).Google Scholar
2 De, I., Johri, D., Srivastava, A., Osburn, C.M., Solid State Electronics, 44 1077 (2000).Google Scholar
3 Cheng, B., Maiti, B., Samavedam, S., Grant, J., Taylor, B., Tobin, P., Mogab, J., 2001 IEEE Intl. SOI Conf., (2001).Google Scholar
4 Gilmer, D.C., Hegde, R., Cotton, R., Garcia, R., Dhandapani, V., Triyoso, D., Roan, D., Franke, A., Rai, R., Prabhu, L., Hobbs, C., Grant, J.M., La, L., Samavedam, S., Taylor, B., Tseng, H., Tobin, P., Appl. Phys. Lett., 81 7 1288 (2002).Google Scholar
5 Hume-Rothery, W., “Atomic Diameters, Atomic Volumes, and Solid Solubility Relations in Alloys”, Acta Metallurgica 14 1720 (1966).Google Scholar
6 Harding, J. H., Interface Science, 11 8190 (2003).Google Scholar
7 Lu, F-H., Newhouse, M.L., Dieckmann, R., Xue, J., Solid State Ionics 75 187192 (1995).Google Scholar
8 Maszara, W.P., Krovokapic, Z., King, P., Goo, J-S., Lin, M-R., 2002 IEDM Tech. Dig. 367370, (2002).Google Scholar
9 Pierson, H., Handbook of Refractory Carbides and Nitrides, (Noyes, 1996)Google Scholar
10 Ranade, P., Takeuchi, H., King, T-J., Hu, C., Electrochem. Sol. State Lett., 4 G85 (2001).Google Scholar
11 Schaeffer, J. K., Samavedam, S. B., Gilmer, D. C., Dhandapani, V., Tobin, P. J., Mogab, J., Nguyen, B-Y., White, B.E. Jr., Dakshina-Murthy, S., Rai, R. S., Jiang, Z-X., Martin, R., Raymond, M. V., Zavala, M., La, L. B., Smith, J. A., Garcia, R., Roan, D., Kottke, M., and Gregory, R. B.., J. Vac. Sci. Tech. B 21 1 (2003).Google Scholar
12 Saito, Y., Kawata, S., Nakane, H., Adachi, H., Appl. Surf. Sci. 146 177 (1999).Google Scholar
13 Kang, C.S., Cho, H.-J., Kim, Y.H., Choi, R., Onishi, K., Shahriar, A., Lee, J.C., J. Vac. Sci. Technol. B 21 5 (2003).Google Scholar
14 Moriwaki, M., Yamada, T., Jpn. J. Appl. Phys., 40 Part 1, 4B 2679 (2001).Google Scholar
15 Park, D-G., Cho, H-J., Lim, K-Y., Cha, T-H., Yeo, I-S., Park, J-W., J. Electrochem. Soc., 148 9 F189 (2001).Google Scholar
16 Park, D-G., Lim, K-Y., Cho, H-J., Cha, T-H., Kim, J-J., Ko, J-K., Yeo, I-S., Park, J-W., 2001 Symp. VLSI Tech. Dig., (2001).Google Scholar
17 Yu, H.Y., Lim, H.F., Chen, J.H., Li, M.F., Zhu, C., Tung, C.H., Du, A.Y., Wang, W.D., Chi, D.Z., Kwong, D.-L., IEEE Elec. Dev. Lett., 24 4 (2003).Google Scholar
18 Suh, Y-S., Heuss, G., Misra, V., J. Vac. Sci. Technol. B 22 1 (2004).Google Scholar
19 Park, D-G., Cha, T-H., Lim, K-Y., Cho, H-J., Kim, T-K., Jang, S-A., Suh, Y-S., Misra, V., Yeo, I-S., Roh, J-S., Park, J-W., Yoon, H-K., IEDM Tech. Dig., 2001, p. 671, (2001).Google Scholar
20 Wahlstrom, U., Hultman, L., Sundgren, J.-E., Adibi, F., Petrov, I., Green, J.E., Thin Solid Films, 235 6270 (1993).Google Scholar
21 Esaka, F., Furuya, K., Shimada, H., Imamura, M., Matsubayashi, N., Kikuchi, T., Ichimura, H., Kawana, A., Surf. Interface Analysis, 27 1098 (1999)Google Scholar
22 Hobbs, C., Fonseca, L., Dhandapani, V., Samavedam, S., Taylor, B., Grant, J., Dip, L., Triyoso, D., Hegde, R., Gilmer, D., Garcia, R., Roan, D., Lovejoy, L., Rai, R., Hebert, L., Tseng, H., White, B. and Tobin, P.. 2003 Symp. on VLSI Tech. Digest (2003)Google Scholar
23 Yeo, Y. C., Ranade, P., King, T-J., Hu, C.. IEEE Elec. Dev. Lett. 23 6 342 (2002)Google Scholar
24 Samavedam, S.B., La, L.B., Tobin, P.J., White, B., Hobbs, C., L.Fonseca, R.C., Demkov, A.A., Schaeffer, J., Luckowski, E., Raymond, M., Triyoso, D., Dhandapani, V., Roan, D., Garcia, R., Martinez, A., Moore, K., Tseng, H.H., Capasso, C., Adetutu, O., Gilmer, D.C., Taylor, W.J., Hegde, R., Grant, J., 2003 IEDM Tech. Dig., (2003)Google Scholar
25 Tersoff, J., Phys. Rev. Lett. 52, 465 (1984)Google Scholar
26 Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y., Lindau, I., J. Vac. Sci. Technol. 16, 1422 (1979)Google Scholar
27 Hasegawa, H., Ohno, H., J. Vac. Sci. Technol. B 4, 1130 (1986)Google Scholar
28 Freeouf, J.L., Woodall, J.M., Appl. Phys. Lett. 39, 727 (1981)Google Scholar
29 Tung, R.T., Mat. Sci. Engr. R, 35 1138 (2001).Google Scholar
30 Perfetti, P., Quaresima, C., Coluzz, C., Fortunate, C., Margaritondo, G., Phys. Rev. Lett., 57 16 2065 (1986).Google Scholar
31 Schaeffer, J., L.Fonseca, R.C., Samavedam, S.B., Liang, Y., Tobin, P.J., White, B.E., (Submitted for publication).Google Scholar
32 Fonseca, L.R.C., presented at the 2003 MRS Spring Meeting, Boston, MA, 2003 (unpublished).Google Scholar
33 Schmiedl, R., Demuth, V., Lahnor, P., Godehardt, H., Bodschwinna, Y., Harder, C., Hammer, L., Strunk, H.-P., Schulz, M., Heinz, K.., Appl. Phys. A 62, 223 (1996)Google Scholar
34 Fillot, F., Chenevier, B., Maitrejean, S., Audier, M., Chaudouet, P., Bochu, B., Senateur, J.P., Pisch, A., Mourier, T., Monchoix, H., Guillaumot, B., Passemard, G., Microelec. Engr. 70 384391 (2003)Google Scholar
35 Fillipov, V.I., Terentjev, A.A., Yakimov, S.S., Sensors and Actuators B 41, 153 (1997)Google Scholar
36 Flietner, B., Doll, T., Lechner, J., Leu, M., Eisele, I., Sensors and Actuators B 22, 109 (1994)Google Scholar
37 Robertson, J., J. Vac. Sci. Technol. B 18, 1785 (2000)Google Scholar
38 Fonseca, L.R.C. and Liang, Y. (private communications)Google Scholar
39 Baikie, I.D., Peterman, U., Lagel, B., Dirscherl, K., J. Vac. Sci. Technol. A 19 4 1460 (2001)Google Scholar