Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T18:32:47.824Z Has data issue: false hasContentIssue false

Ion Beam Irradiation—An Efficient Method to Modify The Subnanometer Scale Microstructure of Polymers In A Controlled Way

Published online by Cambridge University Press:  15 February 2011

Xinglong Xu
Affiliation:
Dept. of Chemical & Environmental Engineering, University of Toledo, Toledo, OH 43606-3390, USA, xxu@eng.utoledo.edu
M. R. Coleman
Affiliation:
Dept. of Chemical & Environmental Engineering, University of Toledo, Toledo, OH 43606-3390, USA
U. Myler
Affiliation:
Dept. of Phys. & Astronomy., Univ. of Western Ontario, London, Ontario, Canada, N6A 3K7
P. J. Simpson
Affiliation:
Dept. of Phys. & Astronomy., Univ. of Western Ontario, London, Ontario, Canada, N6A 3K7
Get access

Abstract

The microstructural evolution of polymers induced by ion beam irradiation was investigated using gas permeation measurements with different molecule size gases and positron annihilation spectroscopy (PAS) using variable-energy positron. Simultaneous large increases in gas permeability and permselectivity of polymer-ceramic composite membranes modified by 180 keV H+ ion irradiation indicated that ion irradiation of polymers can modify the microstructure of polymer at sub-nanometer level in a controlled way. PAS results were consistent with the gas permeation results. The results of this work demonstrated ion beam irradiation has a promising application potential in the separation industry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kesting, R. E. and Fritzsche, A. K., in “Polymeric Gas Separation MembranesWiley-Interscience Publication, New York (1993)Google Scholar
2. Coleman, M. R., and Koros, W. J., J. of Membrane Sci., 50 285 (1990), see also, M. R. Coleman, and W.J. Koros, J. of Polym. Sci., Polym. Phys., 32 1915 (1994)Google Scholar
3. Koros, W. J, Coleman, M. R., and Walker, D.R.B., Annual Rev. of Mater. Sci., 22 47 (1992)Google Scholar
4. Robeson, L. M., Journal of Membrane Sci.,, 62, 165, (1991)Google Scholar
5. Singh, A., and Koros, W. J., Ind. Eng. Chem. Res.,35, 1231 (1996)Google Scholar
6. Davenas, J., Xu, X. L., Boiteux, G., Sage, D., Nucl. Instr. and Meths B 39 754 (1989); see also E.H. Lee, Y. Lee, W.C. Oliver, L.K. Mansur, Journal of Mat. Res. 8, 377 (1993)Google Scholar
7. Davenas, J., Xu, X. L., Nucl. Instr. and Meths B 71 33 (1992), see also, X. L. Xu, J. Y. Dolveck, G. Boiteux, M. Escoubes, M. Monchanin, J. P. Dupin, and J. Davenas, Mat. Res. Soc. Symp. Proc. Vol. 354, 351 (1995)Google Scholar
8. Xu, X. L., Dolveck, J. Y., Boiteux, G., Escoubes, M., Monchanin, M., Dupin, J. P., Davenas, J., J. Appl. Polym. Sci., 55 99 (1995), see also, Xinglong Xu, M. R. Coleman, J. of Appl. Polym. Sci., 66, 459 (1997)Google Scholar
9. Rezac, M. E. and Koros, W. J., J. Appl. Polym. Sci., 46 1927 (1992)Google Scholar
10. Ziegler, J. F., Biersack, J. P., and Littmark, U., in “The Stopping and Range of Ions in Solids”, Vol. 1, Edited by Ziegler, J. F., Pergamon Press, New York, (1985)Google Scholar
11. Myler, U., Coleman, M. R., Xu, X. L., and Simpson, P. J., J. of Polym. Sci., Part B Polym. Phys., 36, 2413 (1998)Google Scholar