Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T02:28:41.293Z Has data issue: false hasContentIssue false

Ion Beam Stabilization of FePt Nanoparticle Arrays for Magnetic Storage Media

Published online by Cambridge University Press:  15 February 2011

J.E.E. Baglin
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120; Materials Research Institute, Northwestern University, Evanston, IL 60208-3116;
Shouheng Sun
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598;
A.J. Kellock
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120;
T. Thomson
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120; Hitachi San Jose Research Center, San Jose, CA 95120.
M.F. Toney
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120; Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, CA 94025.
B.D. Terris
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120; Hitachi San Jose Research Center, San Jose, CA 95120.
C.B. Murray
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598;
Get access

Abstract

We describe the use of ion beam induced crosslinking to harden the organic matrix material of self-assembled arrays of monodisperse (4 nm) FePt nanoparticles, providing diamondlike carbon barriers to inhibit agglomeration of the nanoparticles under heat treatment. Such stabilization is necessary for the particles to survive the >500°C annealing required for growth of the fct L10 phase of FePt, whose magnetic anisotropy is necessary for application of such arrays for high density recording. Selective area irradiation of continuous nanoparticle coatings, using ion beams patterned over a full disk by stencil mask or with ion projection optics, followed by dissolution of the unexposed coating, is proposed as a means of fabricating extended bit patterns consisting of isolated “islands” of FePt nanoparticles, with characteristic dimensions of tens of nanometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A., Science 287, 1989 (2000)Google Scholar
2. Sun, S., Anders, S., Hamann, H.F., Thiele, J.-U., Baglin, J.E.E., Thomson, T., Fullerton, E.E., Murray, C.B. and Terris, B.D., J. Am. Chem Soc. 124, 2884 (2002)Google Scholar
3. Sun, S., Anders, S., Thomson, T., Baglin, J.E.E., Toney, M.F., Hamann, H.F., Murray, C.B. and Terris, B.D., J. Phys. Chem. B., 107, 5419 (2003)Google Scholar
4. Anders, S., Toney, M.F., Thomson, T., Farrow, R.F.C., Thiele, J.-U., Terris, B.D., Sun, S. and Murray, C.B., J. Appl. Phys. 93, 6299 (2003)Google Scholar
5. Lee, Eal H., “Ion Beam Modification of Polyimides”, Chapter 17 in “Polyimides: fundamentals and applications”, eds. Ghosh, M.K. and Mittal, K., Marcel Dekker, New York, 1996.Google Scholar
6. Calcagno, L., Compagnini, G. and Foti, G., Nuclear Instruments and Methods in Physics Research B65, 413 (1992)Google Scholar
7. Marletta, G., “Chemical and Physical Property Modification Induced by Ion Irradiation in Polymers”, in “Materials and Processes for Surface and Interface Enginering”, ed. Pauleau, Y., Kluwer Academic Publishers, Dordrecht, 1995, p. 597.Google Scholar
8. Thomson, T., Toney, M. F., et al., IBM Almaden Research Center, San Jose, CA. (unpublished), (2001).Google Scholar
9. Hamann, H.F., Shouheng Sun and Baglin, J.E.E., “Method and apparatus for linking and/or patterning self-assembled objects”, US Patent No. 6566665, issued May 20, 2003.Google Scholar
10.Mask fabrication is described in: Terris, B.D., Weller, D., Folks, L., Baglin, J.E.E., Kellock, A.J., Rothuizen, H. and Vettiger, P., J. Appl. Phys. 87, 7004 (2000)Google Scholar
11. Dietzel, A., Berger, R., Loeschner, H., Platzgummer, E., Stengl, G., Bruenger, W.H. and Letzkus, F., Advanced Materials. (to be published, 2003).Google Scholar
12. Loeschner, H., Fantner, E.J., Komtner, R., Platzgummer, E., Stengl, G., Zeininger, M., Baglin, J.E.E., Berger, R., Bruenger, W.H., Dietzel, A., Baraton, M.-I. and Merhari, L., Mat. Res. Soc. Symp. Proc. 739, H1.3.1 (2003).Google Scholar
13. Woods, S.I., Ingvarsson, S., Kirtley, J.R., Hamann, H.F. and Koch, R.H., Appl. Phys. Letters 81, 1267 (2002)Google Scholar
14. Chang, G.S., Callcott, T.A., Zhang, G.P., Woods, G.T., Kim, S.H., Shin, S.W., Jeong, K., Whang, C.N. and Moewes, A., Appl. Phys. Letters 81, 3016 (2002)Google Scholar