Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T19:33:01.057Z Has data issue: false hasContentIssue false

Ion Beams for synthesis and modification of nanostructures in semiconductors

Published online by Cambridge University Press:  03 August 2011

N. Srinivasa Rao
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500046, A P, India
G. Devaraju
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500046, A P, India
V. Saikiran
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500046, A P, India
S. V. S. Nageswara Rao
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500046, A P, India
Get access

Abstract

Swift heavy ion irradiation is one of the most versatile techniques to alter and monitor the properties of materials in general and at nanoscale in particular. The materials modification can be controlled by a suitable choice of ion beam parameters such as ion species, fluence and incident energy. It is also possible to choose these ion beam parameters in such a way that ion beam irradiation can cause annealing of defects or creation of defects at a particular depth. Here, we present a review of our work on swift heavy ion induced modifications of III-V semiconductor heterostructures and multi-quantum wells in addition to synthesis of Ge nanocrystals using atom beam co-sputtering, RF magnetron sputtering followed by RTA, swift heavy ion irradiation, respectively. We also present the growth of GeO2 nanocrystals by microwave annealing. These samples were studied by using XRD, Raman, PL, RBS and TEM. The observed results and their explanation using possible mechanisms are discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Semiconductors and Semimetals, Vo. 33, Ed. Pearsal, T. P., Acadmic Press, New York (1991) and ref there in.Google Scholar
2. Drigo, A.V., Aydinli, A., Carnera, A., Genova, F., Rigo, C., Ferrari, C., Fanzosi, P., Saviati, G., J. Appl. Phys. 86, 1975 (1989).10.1063/1.344335Google Scholar
3. Tersoff, J., Appl. Phys. Lett. 65, 2460 (1993).Google Scholar
4. Araujo, D., Gonzalez, D., Garcia, R., Sacedon, A., Calleja, E., Appl.Phys. Lett. 67, 3632 (1995).10.1063/1.115341Google Scholar
5. Mathews, J.W., Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
6. Fritz, I.J., Picraux, S.T., Dawson, L.R., Drummond, T.J., Lsidig, W.D., Anderson, N.G., Appl. Phys. Lett. 46, 987(1985).10.1063/1.95783Google Scholar
7. Dhamodaran, S., Sathish, N., Pathak, A.P., Avasthi, D.K., Muralidharan, R., Sundaravel, B., Nair, K.G.M., Sridhara Rao, D.V., Muraleedharan, K. and Emfietzoglou, D., Nucl. Inst. Meth. B, 254, 283 (2007).10.1016/j.nimb.2006.10.075Google Scholar
8. Dhamodaran, S., Pathak, A.P., Turos, A., Kesavamoorthy, R., Sundaravel, B., Nair, K.G.M. and Arora, B.M., Nucl. Inst. Meth. B, 266, 1908 (2008).10.1016/j.nimb.2007.12.087Google Scholar
9. Dhamodaran, S., Pathak, A.P., Turos, A., Sai Saravanan, G, Khan, S.A., Avasthi, D.K. and Arora, B.M., Nucl. Inst. Meth. B, 266, 583 (2008).10.1016/j.nimb.2007.11.073Google Scholar
10. Kucheyev, S.O., Williams, J.S., Pearton, S., J. Mater. Sci. Eng. R. 33, 51 (2001).10.1016/S0927-796X(01)00028-6Google Scholar
11. Kucheyev, S.O., Timmers Zou, H.J., Williams, J.S., Jagadish, C., Li, G., J. Appl. Phys. 95, 5360 (2004).10.1063/1.1703826Google Scholar
12. Jiang, W., Weber, W.J., Wang, M., Sun, K., Nucl. Inst. Meth. B 218, 427 (2004).10.1016/j.nimb.2003.12.012Google Scholar
13. Suresh Kumar, V., Kumar, J., Kanjilal, D., Asokan, K., Mohanty, T., Tripathi, A., Rossi, Francisca, Zappettini, A., Lazzarani, L., Nucl. Inst. Meth. B 266, 1799 (2008).10.1016/j.nimb.2008.01.070Google Scholar
14. Bolse, W. and Schattat, B., Nucl. Inst. Meth. B 190, 173 (2002).10.1016/S0168-583X(01)01225-3Google Scholar
15. Sathish, N, Pathak, A P, Dhamodaran, S, Sundaravel, B, Nair, K G M, Khan, S A, Avasthi, D K, Bazzan, M. Trave, E., Mazzoldi, P., Radiation Effects and Defects in Solids. (In Press)Google Scholar
16. Devaraju, G., Sathish, N., Pathak, A.P., Turos, A., Bazzan, M., Trave, E., Mazzoldi, P. and Arora, B.M., Nucl. Inst. Meth. B 268, 3001 (2010).10.1016/j.nimb.2010.05.027Google Scholar
17. Caldelas, P., Rolo, A.G., Chahboun A, A., Foss, S., Levichev, S., Finstad, T.G., Gomes, M.J.M., Conde, O. J. Nanosci. Nanotechnol. 8, 572 (2008).10.1166/jnn.2008.A186Google Scholar
18. Zacharias, M., Fauchet, P.M., J. Non-Cryst. Solids, 227230, 1058 (1998).10.1016/S0022-3093(98)00241-5Google Scholar
19. Mestanza, S.N.M., Rodriguez, E., Frateschi, N.C., Nanotechnology 17, 4548 (2006).10.1088/0957-4484/17/18/004Google Scholar
20. Srinivasa Rao, N., Pathak, A.P., Sathish, N., Devaraju, G., Saikiran, V., Kulriya, P.K., Agarwal, D.C., Sai Saravanan, G. and Avasthi, D.K., Solid State Communications 150, 2122 (2010).10.1016/j.ssc.2010.09.014Google Scholar
21. Srinivasa Rao, N., Dhamodaran, S., Pathak, A.P., Kulriya, P.K., Mishra, Y.K., Singh, F., Kabiraj, D., Pivin, J.C. and Avasthi, D.K., Nucl. Inst. Meth B 264, 249 (2007).10.1016/j.nimb.2007.08.094Google Scholar
22. Srinivasa Rao, N., Pathak, A.P., Sathish, N., Devaraju, G., Khan, S.A., Saravanan, K., Panigrahi, B.K., Nair, K.G.M. and Avasthi, D.K., Nucl. Inst. Meth. B 268, 1741(2010).Google Scholar
23. Srinivasa Rao, N., Pathak, A.P., Devaraju, G. and Saikiran, V., Vacuum, 85, 927 (2011).10.1016/j.vacuum.2011.01.012Google Scholar
24. Saikiran, V., Srinivasa Rao, N. Devaraju, G. and Pathak, A. P, AIP conference proceedings, 1336, 264 (2011).10.1063/1.3586101Google Scholar
25. Nageswara Rao, S.V.S., Rajam, A. K., Siddiqui, Azher M., Avasthi, D. K., Srinivasan, T., Tiwari, Umesh, Mehta, S. K., Muralidharan, R., Jain, R. K. and Pathak, Anand P.. Nucl. Inst. Meth. B 212, 473 (2003).10.1016/S0168-583X(03)01458-7Google Scholar
26. Islam, M R, Verma, P, Yamada, M, Kodama, S, Hanaue, Y and Kinoshita, K Mater. Sci. Eng. B 91/92, 66 (2002).10.1016/S0921-5107(01)00972-2Google Scholar
27. Olego, D J, Shahzad, K, Petruzzello, J and Cammack, D Phys. Rev. B 36, 7674 (1987).10.1103/PhysRevB.36.7674Google Scholar
28. Brafman, O, Fekete, D and Sarfaty, R Appl. Phys. Lett. 58, 400 (1991).10.1063/1.104647Google Scholar
29. Burns, G, Wie, C R, Dacol, F H, Pettit, G D and Woodall, J M Appl. Phys. Lett. 51, 1919 (1987).10.1063/1.98300Google Scholar
30. Dhamodaran, S., Sathish, N., Pathak, A.P., Khan, S.A., Avasthi, D.K., Srinivasan, T., Muralidharan, R. and Arora, B.M., Nucl. Inst. Meth. B, 256, 260 (2007).10.1016/j.nimb.2006.12.011Google Scholar
31. Dhamodaran, S, Sathish, N, Pathak, A P, Khan, S A, Avasthi, D K, Srinivasan, T, Muralidharan, R, Kesavamoorthy, R and Emfietzoglou, D, J. Phys. Condens. Matter 18, 4135 (2006).10.1088/0953-8984/18/17/003Google Scholar
32. Manasreh, M.O., Phys. Rev. B 53, 16425 (1996).10.1103/PhysRevB.53.16425Google Scholar
33. Balagurov, L. and Chong, P.J., Appl. Phys. Lett. 68, 43 (1996).10.1063/1.116750Google Scholar
34. Rieger, W., Dimitrov, R., Brunner, D., Rohrer, E., Ambacher, O. and Stutzmann, M., Phys. Rev. B 54, 17596 (1996).10.1103/PhysRevB.54.17596Google Scholar
35. Sathish, N., Dhamodaran, S., Pathak, A.P., Ghanashyam Krishna, M., Khan, S.A., Avasthi, D.K., Pandey, A., Muralidharan, R., Li, G. and Jagadish, C. Nucl. Inst. Meth. B 256, 281 (2007).10.1016/j.nimb.2006.12.060Google Scholar
36. Devaraju, G., Dhamodaran, S., Pathak, A.P., Sai Saravanan, G., Gaca, J., Wojcik, M., Turos, A., Khan, S.A., Avasthi, D.K. and Arora, B.M. Nucl. Inst. Meth. B 266, 3552 (2008).10.1016/j.nimb.2008.05.151Google Scholar
37. Wu, X.M., Lu, M.J. and Yao, W.G. Surf. Coat. Technol. 161, 92 (2002).10.1016/S0257-8972(02)00343-2Google Scholar
38. Lu, M.J., Wu, X.M. and Yao, W.G. Mater. Sci. Eng. B 100, 152 (2003).10.1016/S0921-5107(03)00090-4Google Scholar
39. Kanakaraju, S, Sood, A K and Mohan, S Curr. Sci. 80, 1550 (2001).Google Scholar
40. Fauchet, P.M. and Campbell, I.H., Crit. Rev. Solid State Mater. Sci. 14 S79 (1988).10.1080/10408438808244783Google Scholar
41. Sasaki, Y. and Horie, C., Phys. Rev. B 47, 3811(1993)10.1103/PhysRevB.47.3811Google Scholar
42. Orekhov, D. A., Volodin, V. A., Efremov, M. D., Nikiforov, A. I., Ul’yanov, V. V., and Pchelyakov, O. P., Journal of Experimental and Theoretical Physics Letters, 81,331 (2005).10.1134/1.1944073Google Scholar
43. Toulemonde, M., Dufour, C. and Paumier, E., Phys. Rev. B 46, 14362 (1992).10.1103/PhysRevB.46.14362Google Scholar
44. Meftah, , Brisard, F. Costantini, M., Dooryhee, E., Hage-Ali, M., Hervieu, M., Stoquert, J. P., Studer, F. and Toulemonde, M. Phys. Rev. B 49, 12457 (1994).10.1103/PhysRevB.49.12457Google Scholar
45. Toulemonde, M., Costantini, J. M., Dufour, Ch., Meftah, A., Paumier, E. and Studer, F., Nucl. Inst. Meth. B 116, 37(1996).10.1016/0168-583X(96)00007-9Google Scholar
46. Srinivasa Rao, N, Pathak, A.P., Sathish, N., Devaraju, G. and Saikiran, V. AIP Conf. Proc. 1336, 341 (2011).Google Scholar
47. Asmar, R.A., Atnas, J.P., Ajaka, M., Zaatar, Y., Ferblantier, G., Sauvajol, J.L., Jabbour, J., Juillaget, S. and Foucaran, A., J. Cryst. Growth 279, 394 (2005).10.1016/j.jcrysgro.2005.02.035Google Scholar
48. Kartopu, G., Bayliss, S.C., Karavanskii, V.A., Curry, R.J., Turan, R. and Sapelkin, A.V., J. Lumin. 101, 275 (2003).10.1016/S0022-2313(02)00570-7Google Scholar