Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T00:19:48.889Z Has data issue: false hasContentIssue false

Ion Implantation Related Defects in GaAs

Published online by Cambridge University Press:  26 February 2011

K. S. Jones
Affiliation:
Dept. of Mat. Sci. & Eng., Univ. of FL, Gainesville, FL
M. Bollong
Affiliation:
Dept. of Mat. Sci. & Eng., Univ. of FL, Gainesville, FL
T. E. Haynes
Affiliation:
Oak Ridge Nat'l. Lab., Oak Ridge, TN
M. D. Deal
Affiliation:
Dept. of Elec. Eng., Stanford Univ., Stanford, CA
E. L. Allen
Affiliation:
Dept. of Mat. Sci. & Eng., Stanford Univ., Stanford, CA
H. G. Robinson
Affiliation:
Dept. of Mat. Sci. & Eng., Stanford Univ., Stanford, CA
Get access

Abstract

Extended defect formation is studied in ion implanted GaAs. A number of different species including Si+, Al+, Mg+, Ge+, As+, and Sn* have been investigated. Cross-sectional TEM studies have been done comparing the as-implanted structure (amorphous or crystalline) with the final defect location and morphology. The defects are identified by the same classification scheme used for implanted and annealed silicon. It is found that the threshold dose for type I defect formation is very sensitive to the implant energy for heavier ion masses. Type II, III and IV defects are unstable at annealing temperatures below 900°C. Type V defects are of a loop morphology for Si* and Ge* implants. The source of the interstitials may be a kickout process as the implanted species moves onto substitutional sites. Type V defects for Sn implants appear as precipitates which at the annealing temperature appear to be migrating in the liquid phase. Upon cooling the Sn precipitates, in many cases, solidify as grey (α) Sn.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fair, R. B., Wortman, J. J. and Liu, J., J. Electrochem. Soc. 131, 2387 (1984).Google Scholar
2. Michel, A. E., in Rapid Thermal Processing, edited by Sedgwick, T. O., Seidel, T. E. and Tsaur, B.Y., (Mater. Res. Soc. Proc. 52, Pittsburgh, PA, 1986), pp. 313.Google Scholar
3. Robinson, H. G., Deal, M. D., Stevenson, D. A., and Jones, K. S., “Advances in II-V Compound Semiconductor Growth Processing and Devices,” edited by Pearton, S. J., Sadana, D. K. and Zavada, J. M. (MRS, Pittsburgh, PA) 240, 1992.Google Scholar
4. Chen, S., Lee, S. -T., Braunstein, G., Ko, K. -Y., Zheng, L. R., and Tan, T. Y., Jap. J. Appl. Phys. 29, (11), L19501953 (1990).CrossRefGoogle Scholar
5. Lee, S. -T., Chen, S., Braunstein, G., Ko, Kei-Yu, Ott, M. L., and Tan, T. Y., Appl. Phys. Lett. 52, (4) (1990).Google Scholar
6. Chen, S., Lee, S. -T., Braunstein, G., and Tan, T. Y., Appl. Phys. Lett., 55, (12) (1989).Google Scholar
7. Jones, K. S., Prussin, S. and Weber, E. R., Appl. Phys. A 45, 1 (1988).Google Scholar
8. Jones, K. S., Alien, E. L., Robinson, H. G., Stevenson, D. A., Deal, M. D., and Plummer, J. D., J. Appl. Phys. 1991 (accepted).Google Scholar
9. Haynes, T. E. and Holland, O. W., Appl. Phys. Lett. 59, 4 (1991).Google Scholar
10. Bachmann, T. and Bartsch, H., Nucl. Instr. and Methods on Phys. Res. B43, 529 (1989).Google Scholar
11. Gwilliam, R., Deol, R. S., Blunt, R., and Sealy, B. J., (Mater. Res. Soc. Proc. 92, Pittsburgh, PA 1987) p. 437.Google Scholar
12. Bellon, P., Chevalier, J. P., Martin, G., Microscopy of Semiconducting Materials, edited by Cullis, A. G. and Augustus, P. D., (IOP Publishing Ltd., England, 1987) p. 309.Google Scholar
13. Stewart, C. P., Blunt, R. T., Booker, G. R., and Sanders, I. R., Physica 116B, 635 (1983).Google Scholar
14. Chen, S., Lee, S. -T., Braunstein, G., Ko, K. Y., and Tan, T. Y., J. Appl. Phys. 70, 2 (1991).Google Scholar
15. Ko, K. Y., Chen, S., Lee, S. -T., and Braunstein, G., presented at the 1991 MRS Fall Meeting, Boston, MA, 1991 (unpublished).Google Scholar
16. Pearton, S. J., in Solid State Phenomena, 1–2, 1988, p. 247.Google Scholar
17. Bhattacharya, R. S., Rai, A. K., Yeo, Y. K., Pronko, P. P., Ling, S. C., Wilson, S. R., and Park, Y. S., J. Appl. Phys. 54, (5) (1983).Google Scholar
18. Opyd, W. G., Gibbons, J. F., Bravman, J. C., and Parker, M. A., Appl. Phys. Lett., 49, 974 (1986).Google Scholar
19. Rai, A. K., Bhattacharya, R. S., Pronko, P. P., Appl. Phys. Lett., 41, (11), 10861088 (1982).Google Scholar
20. Shahid, M. A., Bensalem, R., and Sealy, B. J., Nucl. Instr. and Methods in Phys. Res. B30, 531 (1988).CrossRefGoogle Scholar