Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T07:27:23.467Z Has data issue: false hasContentIssue false

Ion Irradiation on Phase Change Materials

Published online by Cambridge University Press:  03 August 2011

Emanuele Rimini
Affiliation:
IMM-CNR, Catania, Italy.
Egidio Carria
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Catania, Italy. MATIS-IMM-CNR, Catania, Italy.
Antonio Massimiliano Mio
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Catania, Italy.
Maria Miritello
Affiliation:
MATIS-IMM-CNR, Catania, Italy.
Santo Gibilisco
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Catania, Italy. MATIS-IMM-CNR, Catania, Italy.
Corrado Bongiorno
Affiliation:
IMM-CNR, Catania, Italy.
Giuseppe D’Arrigo
Affiliation:
IMM-CNR, Catania, Italy.
Corrado Spinella
Affiliation:
IMM-CNR, Catania, Italy.
Francesco D’Acapito
Affiliation:
ESRF GILDA CRG, CNR, IOM OGG, F-38043 Grenoble, France
Maria Grazia Grimaldi
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Catania, Italy. MATIS-IMM-CNR, Catania, Italy.
Get access

Abstract

Ion irradiation with 130 keV Ge+ or 120 keV Sb+ has modified, by thermal spike effect, the local atomic arrangement in the structure of as-deposited sputtered amorphous GeTe and Ge2Sb2Te5 thin films. The changes in the local order have been analyzed by Raman and EXAFS spectroscopy. In addition the crystallization kinetic, measured by “in situ” time resolved reflectivity and optical microscope analysis, is found to be faster in the irradiated samples. The nucleation rate and the grain growth velocity are enhanced by a factor of about ten with respect to the unirradiated samples in the investigated temperature range (120°C –170°C).

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wuttig, M., Yamada, N., Nat. Mater. 6 (2007) 824832.10.1038/nmat2009Google Scholar
[2] Lai, S., IEDM Technical Digest, 2003, pp. 10.1.110.1.4.Google Scholar
[3] Kolobov, A.V., Fons, P., Tominaga, J., Ankudinov, A. L., Yannopolous, S. N., Andrikopolous, K. S., J. Phys. Condens. Matter 16 (2004) 55103.10.1088/0953-8984/16/44/008Google Scholar
[4] Mazzarella, R., Caravati, S., Angioletti-Uberti, S., Bernasconi, M., Parrinello, M., Phys. Rev. Lett. 104 (2010) 085503.10.1103/PhysRevLett.104.085503Google Scholar
[5] Akola, J., F03 EPCOS, available on: http://iffwww.iff.kfa-juelich.de/jones/EPCO-Salj10.pdf , (2010).Google Scholar
[6] Carria, E., Mio, A. M., Gibilisco, S., Miritello, M., Grimaldi, M. G. and Rimini, E., Electrochemical and Solid-State Letters, 14 (2011) H124H127.10.1149/1.3527941Google Scholar
[7] Mio, A. M., Carria, E., D’Arrigo, G., Gibilisco, S., Miritello, M., Grimaldi, M. G., Rimini, E., J. Non-Cryst. Solids (2011).Google Scholar
[8] Rimini, E., De Bastiani, R., Carria, E., Grimaldi, M. G., Nicotra, G., Bongiorno, C., and Spinella, C., J. Appl. Phys. 105, 123502, (2009).10.1063/1.3148288Google Scholar
[9] Andrikopoulos, K. S., Yannopolous, S. N., Lolobov, A. V., Fons, P., and Tominaga, J., J. Phys. Chem. Solids 68, 1074 (2007).10.1016/j.jpcs.2007.02.027Google Scholar
[10] Kolobov, A., Fons, P., Frenkel, A. I., Ankundinov, A. L., Tominaga, J., and Uruga, T., Nature Mater. 3, 703 (2004)10.1038/nmat1215Google Scholar