Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-09-12T03:15:23.801Z Has data issue: false hasContentIssue false

Ion-implantation Generated Nanovoids in Si and MgO Monitored byHigh Resolution Positron Beam Analysis

Published online by Cambridge University Press:  17 March 2011

S.W.H. Eijt
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
C.V. Falub
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
A. van Veen
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
H. Schut
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
P.E. Mijnarends
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
M.A. van Huis
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
A.V. Fedorov
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
Get access

Abstract

The formation of nanovoids in Si(100) and MgO(100) by 3He ionimplantation has been studied. Contrary to Si in which the voids aregenerally almost spherical, in MgO nearly perfectly rectangular nanosizevoids are created. Recently, the 2D-ACAR setup at the Delft PositronResearch Center has been coupled to the intense reactor-basedvariable-energy positron beam POSH. This allows a new method of monitoringthin layers containing nanovoids or defects by depth-selectivehigh-resolution positron beam analysis. The 2D-ACAR spectra of Si with aburied layer of nanocavities reveal the presence of two additionalcomponents, the first related to para-positronium (p-Ps) formation in thenanovoids, and a second one most likely related to unsaturated Si-bonds atthe internal surface of the voids. The positronium is present in excitedkinetic states with an average energy of 0.3 eV. Refilling of the cavitiesby means of low dose 3He implantation (1×1014 cm−2) followed by annealing reduces the formation of Ps andthe width of the Ps peak in the ACAR spectrum. This width reduction is dueto collisions of Ps with He atoms in the voids. In MgO, p-Ps formed with aninitial energy of ~3 eV shows a final average energy of 1.6 eV atannihilation due to collisions with the cavity walls. Possibilities of thisnew, non-destructive method of monitoring the sizes of cavities and theevolution of nanovoid layers will be discussed.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Positron beams and their applications, Coleman, P.G. (Ed.), (World Scientific, Singapore, 2000).Google Scholar
2. Peng, J.P., Lynn, K.G., Asoka-Kumar, P., Becker, D.P. and Hershman, D.R., Phys. Rev. Lett. 76, 2157 (1996).Google Scholar
3. Falub, C.V., Eijt, S.W.H., Veen, A. van, Mijnarends, P.E. and Schut, H., Proceedings ICPA-12, Munich, 2000 (in press).Google Scholar
4. Kooi, B.J., Veen, A. van, Hosson, J.Th.M. de, Schut, H., Fedorov, A.V. and Labohm, F., Appl. Phys. Lett. 76, 1110 (2000).Google Scholar
5. Eijt, S.W.H., Falub, C.V., Mijnarends, P.E. and Veen, A. van, Proceedings ICPA-12, Munich, 2000 (in press).Google Scholar
6. Schut, H., Veen, A. van, Labohm, F., Fedorov, A.V., Neeft, E.A.C. and Konings, R.J.M., Nucl. Instr. Meth. Phys. Res. B 147, 212 (1999).Google Scholar
7. Downing, R.G., Maki, J.T. and Fleming, R.F., J. Radioanal. Nucl. Chem. 112, 33 (1987).Google Scholar
8. Follstaedt, D.M., Myers, S.M., Petersen, G.A., and Medernach, J.W., J. Electron. Mater. 25, 151 (1996).Google Scholar
9. Veen, A. van, Schut, H., Vries, J. de, Hakvoort, R. A. and IJpma, M.R., in Positron Beams for Solids and Surfaces, edited by Schultz, P.J., Massoumi, G.R. and Simpson, P.J. (American Institute of Physics, New York, 1990), p. 171.Google Scholar
10. Nagashima, Y., Morinaka, Y., Kurihara, T., Nagai, Y., Hyodo, T., Shidara, T., and Nakahara, K., Phys. Rev. B 58, 12676 (1998).Google Scholar
11. Sferlazzo, P., Berko, S. and Canter, K.F., Phys. Rev. B 35, 5315 (1987).Google Scholar
12. Nagashima, Y. Kakimoto, M., Hyodo, T., Fujiwara, K., Ichimura, A., Chang, T., Deng, J., Akahane, T., Chiba, T., Suzuki, K., McKee, B.T.A. and Stewart, A.T., Phys. Rev. A 52, 258 (1995).Google Scholar
13. Nagashima, Y., Hyodo, T., Fujiwara, K. and Ichimura, A., J. Phys. B.: At. Mol. Opt. Phys. 31, 329 (1998).Google Scholar
14. He, Y.J., Hasegawa, M., Lee, R., Berko, S., Adler, D., Jung, A.-L., Phys. Rev. B 33, 5924 (1986).Google Scholar
15. Tang, Z., Hasegawa, M., Chiba, T., Saito, M., Kawasuso, A., Li, Z.Q., Fu, R.T., Akahane, T., Kawazoe, Y. and Yamaguchi, S., Phys. Rev. Lett. 78, 2236 (1997).Google Scholar
16. Biasini, A., Ferro, G., Monge, M.A., diFrancia, G. and Ferreira, V. La, J. Phys.: Condens. Matter 12, 5961 (2000).Google Scholar
17. Huang, C.C., Chang, I.M., Chen, Y.F. and Tseng, P.K., Physica B 245, 9 (1998).Google Scholar
18. Chen, D.M., PhD-thesis, City University of New York, 1987, Chapter 5.Google Scholar