Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-16T08:18:58.074Z Has data issue: false hasContentIssue false

Isotope and Dose Effects in Low-Energy H/D Blistering of Silicon: Narrow Operational Window for Ion-Cutting at < 100 nm

Published online by Cambridge University Press:  01 February 2011

O. Moutanabbir
Affiliation:
INRS-EMT, Université du Québec, 1650 Boul. Lionel-Boulet C. P. 1020, Varennes, Québec J3X 1S2, moutanabbir@inrs-emt.uquebec.ca
B. Terreault
Affiliation:
INRS-EMT, Université du Québec, 1650 Boul. Lionel-Boulet C. P. 1020, Varennes, Québec J3X 1S2, moutanabbir@inrs-emt.uquebec.ca
E. Shaffer
Affiliation:
INRS-EMT, Université du Québec, 1650 Boul. Lionel-Boulet C. P. 1020, Varennes, Québec J3X 1S2, moutanabbir@inrs-emt.uquebec.ca
G. G. Ross
Affiliation:
INRS-EMT, Université du Québec, 1650 Boul. Lionel-Boulet C. P. 1020, Varennes, Québec J3X 1S2, moutanabbir@inrs-emt.uquebec.ca
Get access

Abstract

Hydrogen ion blistering has applications in the fabrication of silicon-on-insulator and other devices. Si (001) samples implanted with different fluences of 5 keV H or D ions were rapidly thermal annealed under vacuum. The surface morphology studied by atomic force microscopy revealed that: (1) there is not only a threshold fluence but also a maximum fluence for blistering; and (2) there is a giant isotope effect: The H and D blistering fluence “windows” are (1.5–3.5) × 1016 H cm-2 and (4–8) × 1016 D cm-2 respectively. Due to the higher fluences and higher gas pressure, D blisters are larger (80% surface coverage) than H blisters (60% coverage) and twice as voluminous. Raman spectroscopy and thermal desorption spectrometry suggest that the high fluence blister absence and the giant isotope effect are both connected with an enhancement of the Si–H/D bond stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruel, M., MRS Bull. 12, 35 (1998).Google Scholar
2. Agarwal, A., Haynes, T. E., Venezia, V. C., Holland, O. W., and Eaglesham, D. J., Appl. Phys. Lett. 72, 1086 (1998).Google Scholar
3. Bedell, S. W. and Langford, W. A., J. Appl. Phys. 90, 1138 (2001).Google Scholar
4. Weldon, M. K., Marisco, V. E., Chabal, Y. J., Agarwal, A., Eaglesham, D. J., Sapjeta, J., Brown, W. L., Jacobson, D. C., Caudano, Y., Christman, S. B., and Chaban, E. E., J. Vac. Sci. Technol. B. 15, 1065 (1997).Google Scholar
5. Moutanabbir, O., Terreault, B. and Ross, G. G., Appl. Phys. Lett. 82, 4675 (2003).Google Scholar
6. Moutanabbir, O., Terreault, B., Giguère, A. and Ross, G. G., Appl. Phys. Lett. (submitted)Google Scholar
7. Nanotec Electronica, C/Padilla 1, 28006 Madrid (Spain), http://www.nanotec.es.Google Scholar
8. Ziegler, J. F., Biersack, J. P., The Stopping and Range of Ions in Matter SRIM, www.srim.org.Google Scholar
9. Reboredo, F. A., Ferconi, M., and Pantelides, S. T., Phys. Rev. Lett. 82, 4870 (1999).Google Scholar