Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T23:55:32.578Z Has data issue: false hasContentIssue false

Kinetics of a-Si:H Crystallization Induced by Gold at Low Temperatures

Published online by Cambridge University Press:  21 February 2011

A.A. Pasa
Affiliation:
Inst. f. Phys. Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart, FRG
M.B. Schubert
Affiliation:
Inst. f. Phys. Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart, FRG
C.-D. Abel
Affiliation:
Inst. f. Phys. Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart, FRG
W. Beyer
Affiliation:
Inst. f. Schicht- u. Ionentechnik (ISI-1), Forschungszentrum Jülich, D-5170 Jülich, FRG
W. Losch
Affiliation:
LEMI/COPPE/Uni. Fed. Rio de Janeiro, C.P. 68505, 21945 Rio de Janeiro, RJ, Brazil
G.H. Bauer
Affiliation:
Inst. f. Phys. Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart, FRG
Get access

Abstract

The Au-induced crystallization of a-Si:H has been studied by evaporating Au films of different thicknesses onto intrinsic glow discharge deposited a-Si:H layers. The presence of a sharp peak in the Raman spectra (FWHM≈9 cm-1, ω516 cm-1) of samples with a Au thickness larger than 2 nm, which have been annealed in vacuum at 400K≤T≤600K, indicate that the crystallites have approximately the same size (6nm) regardless of the annealing conditions. An investigation of crystallization versus Au-film thickness revealed, that the total crystallized volume is increasing with Au thickness, and furthermore a saturation of the crystallized volume takes place, most probably due to an exhaustion of the Au reservoir. The increase of crystallization rate with temperature follows an Arrhenius-like dependence with an activation energy of 1.1 eV. Changes in hydrogen content as a consequence of the crystallization have been monitored by H-effusion measurements: Au-coated a-Si:H samples show a strong H2 evolution at temperatures substantially lower than uncoated ones.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hatalis, M. and Greve, D., J. Appl. Phys. 63, 2260 (1988)CrossRefGoogle Scholar
2. Herd, S.R., Chaudhari, P., and Brodsky, M.H., J. Non-Cryst. Solids 7, 309 (1972)Google Scholar
3. Tsai, C.C., Nemanich, R.J., and Thompson, M.J., J. Vac. Sci. Technol. 21, 632 (1982)Google Scholar
4. Hultman, L., Robertson, A., Hentzell, H., Engström, E., and Psaras, P.A., J. Appl. Phys. 62, 3647 (1987)Google Scholar
5. Iqbal, Z. and Veprek, S., J. Phys. C (Solid State Phys.) 15, 377 (1982)Google Scholar
6. Tsu, R., Gonzalez-Hernandez, J., Chao, S.S., Lee, S.C., and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982)Google Scholar
7. Tsu, R., Solar Cells 21, 19 (1987)CrossRefGoogle Scholar
8. Gonzalez-Hernandez, J., Azarbayejani, G.H., Tsu, R., and Poliak, F.H., Appl. Phys. Lett. 47, 1350 (1985)CrossRefGoogle Scholar
9. Bisaro, R., Magariño, J., Zellana, K., Squelard, S., Germain, P., and Morhange, J.F., Phys. Rev. B 31, 3568 (1985)CrossRefGoogle Scholar
10. Allen, L.H., Mayer, J.W., Tu, K.N., and Feldman, L.C., Phys. Rev. B 41, 8213 (1990)Google Scholar
11. Bustarret, E., Hachicha, M.A., and Brunei, M., Appl. Phys. Lett. 52, 1675 (1988)CrossRefGoogle Scholar
12. Bermejo, D. and Cardona, M., J. Non-Cryst. Solids 32, 405 (1979)CrossRefGoogle Scholar
13. Hiraki, A., Progress in the Study of Point Defects, edited by Doyama, M. and Yoshida, S., (University of Tokio Press, 1977), p. 393 Google Scholar