Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T22:28:35.586Z Has data issue: false hasContentIssue false

Laboratory Testing of Waste Glass Aqueous Corrosion; Effects of Experimental Parameters

Published online by Cambridge University Press:  25 February 2011

W.L. Ebert
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne IL 60439
J.J. Mazer
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne IL 60439
Get access

Abstract

A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be used to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the effects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and the particular processes that are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion exchange reactions dominate the observed glass corrosion in dilute solutions, while hydrolysis reactions are dominant in more concentrated solutions. Which process controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 International Atomic Energy Agency, Chemical Durability and Related Properties of Solidified High-Level Waste Forms, Report No. 257 (1985).Google Scholar
2 Cunnane, J.C., “High-Level Waste Borosilicate Glass: A Compendium of Corrosion Characteristics,” this volume.Google Scholar
3 Jantzen, C.M. and Bickford, D.F., Mat. Res. Soc. Symp. Proc. 44 135146 (1985).Google Scholar
4 Goodman, C.H.L., Phys. Chem. Glasses 26, 110 (1985).Google Scholar
5 Bates, J.K. et al. , Argonne National Laboratory Report ANL-93/13 (1993), pp. 153–164 (1993).Google Scholar
6 Doremus, R.H., J. Non-Cryst. Solids 48., 431436 (1982).Google Scholar
7 Smets, B.M.J. and Lommen, T.P.A., Phys. Chem. Glasses 24 (1), 3536 (1983).Google Scholar
8 Schnatter, K.H., Doremus, R.H., and Lanford, W.A., J. Non-Crystal. Solids 102,1118 (1988).CrossRefGoogle Scholar
9 Ebert, W.L., Hoburg, R.F., and Bates, J.K., Phys. Chem. Glasses 32 (4), 133137 (1991).Google Scholar
10 Van Iseghem, P. and Grambow, B., Mat. Res. Soc. Symp. Proc. 112, 631639 (1988).Google Scholar
11 Ebert, W.L., Bates, J.K., and Bourcier, W.L., Waste Mgmt. 11, 205221(1991).Google Scholar
12 Nuclear Waste Materials Handbook, DOE/TIC-11400 (1982).Google Scholar
13 Jantzen, C.M., Bibler, N.E., Beam, D.C., Ramsey, W.G., and Waters, B.J., WSCR-TR-90-539, Rev. 2 (1992).Google Scholar
14 Delage, F. and Dussossoy, J.L., Mat. Res. Soc. Symp. Proc. 212,4147 (1991).CrossRefGoogle Scholar
15 Scheetz, B.M., Freeborn, W.P., Smith, D.K., Anderson, C., Zolensky, M., and White, W.B., Mat. Res. Soc. Symp. Proc. 44, 129134 (1985).Google Scholar
16 Grambow, B., Mat. Res. Soc. Symp. Proc. 44, 1524 (1985).Google Scholar
17 Bourcier, W.L., Peiffer, D.W., Knauss, K.G., McKeegan, K.D., and Smith, D.K., Mat. Res. Soc. Symp. Proc. 176, 209216 (1990).Google Scholar
18 Pederson, L.R., Buckwalter, C.Q., and McVay, G.L., Nucl. Technol. 62,151158 (1983).Google Scholar
19 Grambow, B., JSS Report 87-02 (1987).Google Scholar
20 Bates, J.K., Ebert, W.L., Feng, X., and Bourcier, W.L., J. Nucl. Mater. 190, 198227 (1992).Google Scholar
21 Bourcier, W.L., Weed, H.C., Nguyen, S.N., Nielsen, J.K., Morgan, L., Newton, L., and Knauss, K.G., Proceedings of the Seventh International Symposium on Water-Rock Interactions, Park City, Utah, pp. 8184 (1992).Google Scholar
22 Advocat, T., Crovisier, J.L., Fritz, B., and Vernaz, E., Mat. Res. Soc. Symp. Proc. 176, 241248(1990).CrossRefGoogle Scholar
23 Knauss, K.G., Bourcier, W.L., McKeegan, K.D., Merzbacher, C.I., Nguyen, S.N., Ryerson, F.J., Smith, D.K., and Weed, H.C., Mat. Res. Soc. Symp. Proc. 176, 371381 (1990).Google Scholar
24 Advocat, T., Crovisier, J.L., Vernaz, E., Ehret, G., and Charpentier, H., Mat. Res. Soc. Symp. Proc. 212, 5764 (1991).Google Scholar
25 Bourcier, W.L., Ebert, W.L., and Feng, X., Mat. Res. Soc. Symp. Proc. 294, 577582 (1993).Google Scholar
26 Freude, E., Grambow, B., Lutze, W., Rabe, H., and Ewing, R.C., Mat. Res. Soc. Symp. Proc. 44, 99105(1985).CrossRefGoogle Scholar
27 Van Iseghem, P., Amaya, T., Suzuki, Y., and Yamamoto, H., J. Nucl. Mater. 190, 269276 (1992).Google Scholar
28 Grambow, B., Lutze, W., and Muller, R., Mat. Res. Soc. Symp. Proc. 257, 143150 (1992).CrossRefGoogle Scholar
29 Vernaz, E., Advocat, T., and Dussossoy, J.L., Nuclear Waste Management III, 175185 (1990).Google Scholar
30 Vernaz, E.Y., Dussossoy, J.L., and Fillet, S., Mat. Res. Soc. Symp. Proc. 112, 555563 (1988).Google Scholar
31 Westsik, J.H. Jr., and Peters, R.D., in Scientific Basis for Nuclear Waste Management III, pp 355–362 (1981).Google Scholar
32 Barkatt, Aa., Gibson, B.C., Macedo, P.B., Montrose, C.J., Sousanpour, W., Barkatt, Al, Boroomand, M.A., Rogers, V., and Penafiel, M., Nucl. Technol. 73, 140164 (1986).Google Scholar
33 Goldston, W.T. and Plodinec, M.J., Ceram. Trans. 23, 443452 (1991).Google Scholar
34 Jantzen, C.M., “Thermodynamic Approach to Glass Corrosion,” in Corrosion of Glass. Ceramics and Ceramic Superconductors Principles. Testing. Characterization and Applications. Clark, D.E. and Zoitos, B.K., eds., Noyes Publications, Park Ridge, NJ, pp.153215(1991).Google Scholar
35 Hrma, P.R., Schweiger, M.J., Piepel, G.F., and Smith, D.E., Proc. of Third International High-Level Radioactive Waste Management (IHLRWM) Conf., Las Vegas, NV, April 12-16, 1992, pp 12361243 (1992).Google Scholar
36 Fillet, S., Nogues, J., Vernaz, E., and Jacquet-Francillon, N., Mat. Res. Soc. Symp. Proc. 50, 211218 (1985).Google Scholar
37 Bibler, N.E., Savannah River Laboratory Report DP-MS-85-141 (1986).Google Scholar
38 Wronkiewicz, D.J., “Radionuclide Decay Effects on Waste Glass Corrosion and Weathering,” this volume.Google Scholar
39 Ebert, W.L., and Bates, J.K., Nucl. Technol. 104 (3). 372384 (1993).CrossRefGoogle Scholar
40 Ebert, W.L., Phys. Chem. Glasses 34 (2), 5865 (1993).Google Scholar
41 Bunnell, L.R., Maupin, G.D., and Oma, K.H., Adv. in Ceram. 20, 167173 (1986).Google Scholar
42 Van Iseghem, P. and Lemmens, K., “The Interaction Between HLW Glass and Boom Clay Host Rock,” in Geological Disposal of Spent Fuel and High Level and Alpha Bearing Waste. International Atomic Energy Agency, Vienna, IAEA-SM-326/36 (1993).Google Scholar
43 Adiga, R.B., Akomer, E.P., and Clark, D.E., Mat. Res. Soc. Symp. Proc. 44, 4554 (1985).Google Scholar
44 Barkatt, Aa., Sousanpour, W., Barkatt, Al., Boroomand, M.A., and Macedo, P.B., Mat. Res. Soc. Symp. Proc. 26, 643653 (1984).Google Scholar