Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T06:00:55.980Z Has data issue: false hasContentIssue false

Laser ablation-based nanofabrication in aqueous solutions

Published online by Cambridge University Press:  01 February 2011

Andrei V. Kabashin
Affiliation:
Laser Processing Laboratory, Department of Engineering Physics, Ecole Polytechnique de Montreal, Case Postale 6079, Succ. Centre-ville, Montreal, Quebec, Canada, H3C 3A7
Michel Meunier
Affiliation:
Laser Processing Laboratory, Department of Engineering Physics, Ecole Polytechnique de Montreal, Case Postale 6079, Succ. Centre-ville, Montreal, Quebec, Canada, H3C 3A7
Get access

Abstract

An overview of research results related to the femtosecond laser ablation-based method for nanofabri-cation in aqueous solutions is presented. The method makes possible the production of stable biofunctionalized gold nanoparticle colloids with extremely small size (down to 2–2.5 nm) and size dispersion (down to 1–1.5 nm). The colloids are of importance for biosensing applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kerker, M., The scattering of light and other electromagnetic radiation, (Academic Press, New York, 1969).Google Scholar
2. Kreibig, U., Vollmer, M., Opt. Properties of Metal Clusters, (Springer-Verlag: Berlin, 1996).Google Scholar
3. Hyatt, M. A., Ed. Colloidal Gold: Principles, Methods, and Applications, (Academic Press: New York, 3, 1989).Google Scholar
4. Daniel, M.-C. and Astruc, D., Chem. Rev. 104, 293 (2004).Google Scholar
5. Fojtik, A., Henglein, A., Ber. Bunsen-Ges. Phys. Chem, 97, 252 (1993).Google Scholar
6. Sibbald, M. S., Chumanov, G., Cotton, T. M., J. Phys. Chem., 100, 4672 (1996).Google Scholar
7. Yeh, M.S., Yang, Y.S., Lee, Y.P., Lee, H.F., Yeh, Y.H., Yeh, S., J. Phys. Chem. 103, 6851 (1999).Google Scholar
8. Mafune, F., Kohno, J-Y., Takeda, Y., Kondow, T., Sawabe, H., J. Phys. Chem., B, 104, 9111 (2000).Google Scholar
9. Mafune, F., Kohno, J-Y., Takeda, Y., Kondow, T., Sawabe, H.. J. Phys. Chem., 104, 8333 (2000).Google Scholar
10. Mafune, F., Kohno, J-Y., Takeda, Y., Kondow, T., Sawabe, H., J. Phys. Chem. B, 105 5144 (2001).Google Scholar
11. Chen, Y.-H., and Yeh, C.-S., Colloids & Surfaces, 197, 133 (2002).Google Scholar
12. Dolgaev, S. I., Simakin, A. V., Voronov, V. V., Shafeev, G. A., and Bozon-Verduraz, F., Appl. Surf. Sci., 186, 546 (2002).Google Scholar
13. Tsuji, T., Iryo, K., Watanabe, N., Tsuji, M., Appl. Surf. Sci. 202, 80 (2002).Google Scholar
14. Kabashin, A.V., Meunier, M., Kingston, C., Luong, J. H.T., J. Phys. Chem B, 107, 4527 (2003).Google Scholar
18. Kabashin, A.V., Meunier, M., Luong, J. H., Proc. SPIE, 4977, 609 (2003).Google Scholar
19. Kabashin, A.V., Meunier, M., J. Appl. Phys., 94, 7941 (2003).Google Scholar
20. Sylvestre, J.-P., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.T., J. Am. Chem. Soc. (Commun.), 126, 7176 (2004).Google Scholar
21. Sylvestre, J.-P., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J. Proc. SPIE 5339 84 (2004)Google Scholar
22. Sylvestre, J.-P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.T. J. Phys. Chem. B, 108, 16864 (2004).Google Scholar
23. Sylvestre, J.-P., Kabashin, A.V., Sacher, E., Meunier, M., Appl. Phys. A, 80 (2004)Google Scholar
24. Ready, J. F., Farson, D. F., Eds.; LIA Handbook of Laser Materials Processing (Springer-Verlag and Heidelberg GmbH & Co., Berlin, 2001) pp. 499508.Google Scholar
25. Szejtli, J., In Comprehensive Supramolecular Chemistry, Atwood, J.L., Davies, J.E.D., Macnicol, D.D., Vogtle, F., Eds. (Pergamon-Elsevier, New York, 1996) Vol. 3; pp. 540.Google Scholar