Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T05:36:14.192Z Has data issue: false hasContentIssue false

Laser Oscillation in Aggregates of Ultrasmall Si Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Munir H. Nayfeh*
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign 1110 W. Green Street, Urbana, Illinois 61801 USA electronic mail: m-nayfeh@uiuc.edu
Get access

Abstract

We dispersed electrochemically etched Si into ultrabright ultrasmall nanoparticles, with brightness higher than fluorescein or rhodamine. The emission from single particles is readily detectable. Aggregates or films of the particles exhibit emission with highly nonlinear characteristics. We observe directed blue beams at ∼ 410 nm between faces of aggregates excited by femtosecond radiation at 780 nm; and at ∼ 610 nm from aggregates of red luminescent Si nanoparticles excited by radiation at 550-570 nm from a mercury lamp. Intense directed Gaussian beams, a pumping threshold, spectral line narrowing, and speckle patterns manifest the emission. The results are analyzed in terms of population inversion and stimulated emission in quantum confinement-induced Si-Si dimer phase, found only on ultrasmall Si nanoparticles. This microlasing constitutes an important step towards the realization of a laser on a chip.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990). A. G. Cullis, L.T. Canham, and P. Calcott, J. Appl. Phys. 82, 909 (1997).Google Scholar
2. Akcakir, O., Therrien, J., Belomoin, G., Barry, N., Gratton, E., and Nayfeh, M., Appl. Phys. Lett. 76, 1857 (2000).Google Scholar
3. Belomoin, G., Therrien, J., and Nayfeh, M., Appl. Phys. Lett. 77, 779 (2000).Google Scholar
4. Belomoin, G., Therrien, J., Smith, A., Rao, S., Twesten, R., Chaieb, S., Nayfeh, M.H., Wagner, L., and Mitas, L., Appl. Phys. Lett. 80, 841 (2002).Google Scholar
5. Nayfeh, M. H., Barry, N., Therrien, J., Akcakir, O., Gratton, E., and Belomoin, G., Appl. Phys. Lett. 78, 1131 (2001).Google Scholar
6. Nayfeh, M. H., Akcakir, O., Belomoin, G., Barry, N., Therrien, J., and Gratton, E., Appl. Phys. Lett. 77, 4086 (2001).Google Scholar
7. Nayfeh, M. H., Therrien, J., Belomoin, G., Akcakir, O., Barry, N., and Gratton, E., Proc. Material Research Society 638 F9.512 (2000).Google Scholar
8.M.Nayfeh, Akcakir, O., Therrien, J., Yamani, Z., Barry, N., Yu, W., and Gratton, E., Appl. Phys. Lett. 75, 4112 (1999).Google Scholar
9. Nayfeh, M.H., Rao, S., Barry, N., Therrien, J., Belomoin, G., Smith, A., and Chaieb, S., Appl. Phys. Lett. 80, 121 (2002).Google Scholar
10. Mitas, L., Therrien, J., Twesten, R., Belomoin, G., Akcakir, O, and Nayfeh, M., Appl. Phys. Lett. 78, 1918 (2001).Google Scholar
11. Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 2961 (1996).Google Scholar
12. Nayfeh, M., Rigakis, N., and Yamani, Z., Phys. Rev. B 56, 2079 (1997). MRS Proceedings, 486, 243 (1998).Google Scholar
13. Yariv, A., Quantum Electronics, John Wiley & Sons (1975).Google Scholar