Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-15T02:32:38.684Z Has data issue: false hasContentIssue false

Lateral Distribution of Electrons Trapped in Nitride Layers

Published online by Cambridge University Press:  01 February 2011

M. Lorenzini
Affiliation:
IMEC—Interuniversity Microelectronics Center, Kapeldreef 75, 3001 Leuven, Belgium
M. Rosmeulen
Affiliation:
IMEC—Interuniversity Microelectronics Center, Kapeldreef 75, 3001 Leuven, Belgium Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
L. Breuil
Affiliation:
IMEC—Interuniversity Microelectronics Center, Kapeldreef 75, 3001 Leuven, Belgium
L. Haspeslagh
Affiliation:
IMEC—Interuniversity Microelectronics Center, Kapeldreef 75, 3001 Leuven, Belgium
J. Van Houdt
Affiliation:
IMEC—Interuniversity Microelectronics Center, Kapeldreef 75, 3001 Leuven, Belgium
K. De Meyer
Affiliation:
IMEC—Interuniversity Microelectronics Center, Kapeldreef 75, 3001 Leuven, Belgium Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
Get access

Abstract

The recent advent of nitride-based localized charge-trapping storage has raised much interest in the lateral characterization of the trapped charge distribution, which is fundamental in defining scalability and retention properties. A direct characterization technique based on amplitude-sweep charge-pumping measurements is exploited here to investigate the lateral distribution of trapped electrons along the channel length. Further, the technique is applied to monitor the charge redistribution in time at high temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eitan, B., Pavan, P., Bloom, I., Aloni, E., Frommer, A., and Finzi, D., IEEE Electron Device Lett. 21, 399 (2000).Google Scholar
2. Tsai, W. J., Zous, N. K., Liu, C. J., Liu, C. C., Chen, C. H., Wang, T., Pan, S., and Lu, C.-Y., IEDM Tech. Dig. 2001, 719.Google Scholar
3. Lusky, E., Shacham-Diamand, Y., Bloom, I., and Eitan, B., IEEE Trans. Electron Devices 51, 556 (2001).Google Scholar
4. Lusky, E., Shacham-Diamand, Y., Mitenberg, G., Shappir, A., Bloom, I., Eitan, B., IEEE Electron Device Lett. 22, 444 (2004).Google Scholar
5. Rosmeulen, M., Breuil, L., Lorenzini, M., Haspeslagh, L., Van Houdt, J., De Meyer, K., SolidState Electron. 48, 1525 (2004).Google Scholar
6. Groeseneken, G., Maes, H., Microelectron. Reliab. 38, 1379 (1998).Google Scholar