Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T02:32:15.747Z Has data issue: false hasContentIssue false

Lateral uniformity of the transport properties of graphene/4H-SiC (0001) interface by nanoscale current measurements

Published online by Cambridge University Press:  31 January 2011

Filippo Giannazzo
Affiliation:
filippo.giannazzo@imm.cnr.it, CNR-IMM, Catania, Italy
Sushant Sonde
Affiliation:
sushant.sonde@imm.cnr.it, CNR-IMM, Catania, Italy
Jean-Roch Huntzinger
Affiliation:
jean-roch.huntzinger@univ-montp2.fr, GES, CNRS and Université Montpellier 2, Montpellier, France
Antoine Tiberj
Affiliation:
antoine.tiberj@ges.univ-montp2.fr, GES, CNRS and Université Montpellier 2, Montpellier, France
Rositza Yakimova
Affiliation:
roy@ifm.liu.se, IFM, Linkoping University, Linkoping, Sweden
Vito Raineri
Affiliation:
vito.raineri@imm.cnr.it, CNR-IMM, Catania, Italy
Jean Camassel
Affiliation:
camassel@ges.univ-montp2.fr, GES, CNRS and Université Montpellier 2, Montpellier, France
Get access

Abstract

Conductive Atomic Force Microscopy was applied to study the lateral uniformity of current transport at the interface between graphene and 4H-SiC, both in the case of epitaxial graphene (EG) grown on the Si face of 4H-SiC and in the case of graphene exfoliated from HOPG and deposited (DG) on the same substrate. This comparison is aimed to investigate the role played by the C-rich buffer layer present at EG/4H-SiC interface and absent in the case of DG/4H-SiC. The distribution of the local Schottky barrier heights at EG/4H-SiC interface (ΦEG) was compared with the distribution measured at DG/4H-SiC interface (ΦDG), showing that ΦEG (0.36±0.1eV ) is ˜0.49eV lower than ΦDG (0.85 ± 0.06eV). This difference is explained in terms of the Fermi level pinning ˜0.49eV above the Dirac point in EG, due to the presence of positively charged states at the interface between the Si face of 4H-SiC and the buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Geim, A. K., Science 324, 1530 (2009).Google Scholar
2 Neto, A. H. Castro, Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).Google Scholar
3 Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., Heer, W. A. de, Science 312, 1191 (2006).Google Scholar
4 Virojanadara, C., Syvajarvi, M., Yakimova, R., Johansson, L. I., Zakharov, A. A., Balasubramanian, T., Phys. Rev. B 78, 245403 (2008).Google Scholar
5 Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Rohrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B., Seyller, T., Nature Materials 8, 203 (2009).Google Scholar
6 Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B. N., Naud, C., Mallet, P., Veuillen, J.-Y., Berger, C., Conrad, E. H., Magaud, L., Phys. Rev. Lett. 99, 126805 (2007).Google Scholar
7 Emtsev, K. V., Speck, F., Seyller, T., Riley, J. D., Ley, L., Phys. Rev. B 77, 155303 (2008).Google Scholar
8 Giannazzo, F., Sonde, S., Huntzinger, J.-R., Tiberj, A., Syväjärvi, M., Yakimova, R., Raineri, V. and Camassel, J., Phys. Rev. B 80, 241406(R) (2009).Google Scholar
9 Giannazzo, F., Sonde, S., Raineri, V., Rimini, E., Nano Lett. 9, 23 (2009).Google Scholar
10 Giannazzo, F., Roccaforte, F., Raineri, V., and Liotta, S. F., Europhys. Lett. 74, 686 (2006).Google Scholar
11 Giannazzo, F., Roccaforte, F., Iucolano, F., Raineri, V., Ruffino, F., Grimaldi, M. G., J. Vac. Sci. Technol. B 27, 789 (2009).Google Scholar
12 Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, A. K., Phys. Rev. Lett. 97, 187401 (2006).Google Scholar
13 Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U. V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A. C., Sood, A. K., Nature Nanotechn. 3, 210 (2008).Google Scholar
14 Mohiuddin, T. M. G., Lombardo, A., Nair, R. R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D. M., Galiotis, C., Marzari, N., Novoselov, K. S., Geim, A. K., Ferrari, A. C., Phys. Rev. B 79, 205433 (2009).Google Scholar
15 Robinson, J. A., Puls, C. P., Staley, N. E., Stitt, J. P., Fanton, M. A., Emtsev, K. V., Seyller, T., Liu, Y., Nanolett., 9, 964 (2009).Google Scholar
16 Lee, D. Su, Riedl, C., Krauss, B., Klitzing, K. von, Starke, U., Smet, J. H., Nanolett. 5, 4320 (2008).Google Scholar
17 Ni, Z. H., Chen, W., Fan, X. F., Kuo, J. L., Yu, T., Wee, A. T. S., Shen, Z. X., Phys. Rev. B 77, 115416 (2008).Google Scholar
18 Deretzis, I. and Magna, A. La, Appl. Phys. Lett. 95, 063111 (2009).Google Scholar
19 Ohta, T., Bostwick, A., Seyller, T., Horn, K., and Rotenberg, E., Science 313, 951 (2006).Google Scholar