Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-30T05:13:01.363Z Has data issue: false hasContentIssue false

Let there be Light in Tight Binding

Published online by Cambridge University Press:  10 February 2011

P. Vogl
Affiliation:
Walter Schottky Institute, Techn. Univ. Munich, D-85748 Garching, Germany, vogl@wsi.tu-muenchen.de
M. Graf
Affiliation:
Walter Schottky Institute, Techn. Univ. Munich, D-85748 Garching, Germany, vogl@wsi.tu-muenchen.de
A. Görling
Affiliation:
institute of Theoretical Chemistry, Techn. Univ. Munich, D-85748 Garching, Germany
Get access

Abstract

Empirical tight-binding theory is generalized to incorporate time-dependent electromagnetic fields in a systematic and gauge-invariant manner that does not introduce any extra adjustable parameters. It is shown that this approach successfully predicts a wide range of solid state properties that have not been accessible within the tight binding method so far. We present applications such as optical constants, luminescence in heterostructures, properties in ultra-high magnetic fields and lattice dynamics in polar materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harrison, W. A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).Google Scholar
2. Vogl, P., Hjalmarson, H. P., and Dow, J. D., J. Chem. Solids 44, 365 (1983).Google Scholar
3. Papaconstantopoulos, D. A., Handbook of the Band Structure of Elemental Solids(Plenum, New York, 1986).Google Scholar
4. Priester, C., Allan, G., and Lannoo, M., Phys. Rev. B 37, 8519 (1988).Google Scholar
5. Lengel, G., Wilkins, R., Brown, G., Weimer, M., Gryko, J., and Allen, R. E., Phys. Rev. Lett. 72, 836 (1994).Google Scholar
6. Harrison, W. A. and Straub, G. K., Phys. Rev. B 36, 2695 (1987).Google Scholar
7. Majewski, J. A. and Vogl, P., Phys. Rev. B 35, 9666 (1987).Google Scholar
8. Pettifor, D.G., Solid State Physics 40, 43 (1987).Google Scholar
9. Mazur, A. and Pollmann, J., Phys. Rev. B 39, 5261 (1989).Google Scholar
10. Sankey, O. F. and Allen, R. E., Phys. Rev. B 33, 7164 (1986);Google Scholar
Menon, M. and Allen, R. E., Phys. Rev. B 33, 7099 (1986).Google Scholar
11. Harrison, W. A. and Kiepeis, J. E., Phys. Rev. B 37, 864 (1988).Google Scholar
12. Lew Yan Voon, L. C., Ram-Mohan, L. R., Phys. Rev. B 47, 15500 (1993).Google Scholar
13. Polatoglou, H. M., Theodorou, G., and Tserbak, C., Phys. Rev. B 49, 8132 (1994).Google Scholar
14. Durán, J. C., Flores, F., Tejedor, C., and Munoz, A., Phys. Rev. B 36, 5920 (1987).Google Scholar
15. Graf, M. and Vogl, P., Phys. Rev. B 51, 4940 (1995);Google Scholar
Graf, M., PhD thesis, Techn. Univ. Munich, 1996.Google Scholar
16. Chadi, D. J., Phys. Rev. B 16, 790 (1977).Google Scholar
17. Boykin, T. B., Phys. Rev. B 52, 16317 (1995).Google Scholar
18. Boykin, T. B., Klimeck, G., Bowen, R. C., and Lake, R., Phys. Rev. B 56, 4102 (1997).Google Scholar
19. Di Carlo, A. and Vogl, P., Phys. Rev. B 50, 8358 (1994).Google Scholar
20. Luttinger, J. M. and Kohn, W., Phys. Rev. 97, 869 (1955).Google Scholar
21. Hofstadter, D. R., Phys. Rev. B 14, 2239 (1976).Google Scholar
22. Brown, E., Solid State Phys. 22, 313 (1968).Google Scholar
23. Tan, W.-C., Inkson, J.C., and Srivastava, G.P., Phys. Rev. B 54, 14623 (1996).Google Scholar
24.See, e.g., Miura, N., Nojiri, H., and Imanaka, Y., in 22nd Internat. Conf.on the Physics of Semiconductors, edited by Lockwood, D. J. (World Scientific, Singapore, 1994), p. 1111.Google Scholar
25. Priester, C., Allan, G., and Lannoo, M., Phys. Rev. B 38, 9870 (1988).Google Scholar
26. Sipe, J. E. and Ghahramani, Ed, Phys. Rev. B 48, 11705 (1993).Google Scholar
27. Jancu, J.-M., Scholz, R., Beltram, F., and Bassani, F., Phys. Rev. B, in press.Google Scholar
28. Lautenschlager, P., Garriga, M., Logothetidis, S., and Cardona, M., Phys. Rev. B 35, 9174 (1987).Google Scholar
29. Di Carlo, A., Pescetelli, S., Pacioti, M., and Lugli, P., Solid State Commun. 98, 803 (1996).Google Scholar
30. Straub, G. K. and Harrison, W. A., Phys. Rev. B 39, 10325 (1989).Google Scholar
31. Majewksi, J. A. and Vogl, P., in The Structure of Binary Compounds, edited by de Boer, F.R. and Pettifor, D. G. (Elsevier, New York, 1989), p. 287.Google Scholar
32. Bilz, H. and Kress, W., Phonon Dispersion Relation in Insulators (Springer, Berlin, 1979).Google Scholar
33. Sham, L. J., in Dynamical Properties of Solids, edited by Horton, G. K. and Maradudin, A. A. (Elsevier, New York, 1974), p. 301.Google Scholar
34. Vogl, P., J. Phys. C 11, 251 (1978).Google Scholar
35. Bennetto, J. and Vanderbilt, D., Phys. Rev. B 53, 15417 (1996).Google Scholar