Skip to main content Accessibility help

Ligand Structure Effect on A Divalent Ruthenium Precursor for MOCVD

  • Kazuhisa Kawano (a1), Hiroaki Kosuge (a2), Noriaki Oshima (a3), Tadashi Arii (a4), Yutaka Sawada (a5) and Hiroshi Funakubo (a6)...


Thermal properties of five divalent ruthenium precursors with three types of structures were examined by thermal analyses. Their volatilities and the relationships between their structure and thermal stability were compared by TG analysis. Precursor volatility was found to be inversely proportional to molecular weight. The DSC result showed that substituting a linear pentadienyl ligand for a cyclopentadienyl ligand decreased the thermal stability of a precursor and precursors could be liquefied by attaching an alkyl group longer than methyl group to a Cp ligand. As a result of TG-MS analyses for Ru(DMPD)(EtCp) and Ru(EtCp)2, 2,4-dimethyl-1,3-pentadiene was found to be a thermolysis product of Ru(DMPD)(EtCp) though no thermolysis products of Ru(EtCp)2 were observed. These results show that the volatility and decomposition temperature of a divalent ruthenium precursor can be designed by adjusting the precursor's structure.



Hide All
1 Aoyama, T., Saida, S., Okayama, Y., Fujisaki, M., Imai, K., and Arikado, T., J. Electrochem. Soc., 143, 977 (1996).
2 Yamaguchi, H., Lesaicherre, P. Y., Sakuma, T., Miyasaka, Y., Ishitani, A., and Yoshida, M., Jpn. J. Appl. Phys., 32, 4069 (1993).
3 Lesaicherre, P. Y., Yamamichi, S., Takemura, K., Yamaguchi, H., Tokashiki, K., Miyasaka, Y., Yoshida, M., and Ono, H., Integrated Ferroelectrics, 11, 81 (1995).
4 Pan, W. and B. Desu, S., J. Vac. Sci. and Technol., B12, 3208 (1994).
5 Vijay, D. P., Desu, S. B., and Pan, W., J. Electrochem. Soc., 140, 2635 (1993).
6 Saito, S. and Kuramasu, K., Jpn. J. Appl. Phys., 31, 135 (1992).
7 F. Scott, J., Morrison, F. D., Miyake, M., Zubko, P., Lou, Xiaojie, Kugler, V. M., Rios, S., Zhang, M., Tatsuta, T., Tsuji, O., and Leedham, T. J., J. Amer. Ceramic Soc., 88, 1691 (2005).
8 Kang, S. Y., Choi, K. H., Lee, S. H., Hwang, C. S., and Kim, H. J., J. Electrochem. Soc., 147, 1161 (2000).
9 Kadoshima, M., Nabatame, T., Hiratani, M., and Nakamura, Y., Jpn. J. Appl. Phys., Part 2, 41, L437 (2002).
10 Shibutami, T., Kawano, K., Oshima, N., Yokoyama, S., and Funakubo, H., Electrochem. Solid-State Lett., 6, C117 (2003).
11 Kawano, K., Nagai, A., Kosuge, H., Shibutami, T., Oshima, N., and Funakubo, H., Electrochem. Solid-State Lett., 9, C107 (2006).
12 Kawano, K., Kosuge, H., Oshima, N., and Funakubo, H., Electrochem. Solid-State Lett., 9, C175 (2006).
13 Kim, S. K., Lee, S. Y., Lee, S. W., Hwang, G. W., Hwang, C. S., Lee, J. W., and Jeong, J., J. Electrochem. Soc., 154, D95 (2007).
14 Brekel, C., Brekel, J., and Bloem, J., Philips Res. Rep., 32, 234 (1977).
15 Shibutami, T., Kawano, K., Oshima, N., Yokoyama, S., and Funakubo, H., Mater. Res. Soc. Symp. Proc., 748, U12.7 (2003).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed