Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-06T01:06:53.248Z Has data issue: false hasContentIssue false

Limiting Steps at Low Temperature in Direct Writing of Al on Si From Tma

Published online by Cambridge University Press:  26 February 2011

J. Flicstein
Affiliation:
CNET - Laboratoire de Bagneux, 92220 BAGNEUX - FRANCE
J.E. Bouree
Affiliation:
Laboratoire de Physique des Solides - 92195 MEUDON - FRANCE
J.F. Bresse
Affiliation:
CNET - Laboratoire de Bagneux, 92220 BAGNEUX - FRANCE
A.M. Pougnet
Affiliation:
Laboratoire de Physique des Solides - 92195 MEUDON - FRANCE
Get access

Abstract

The rates of aluminum line growth, assisted by photolysis, in the normal direction to the Si (100) substrate, indicate that, in a trimethyl-aluminum + hydrogen mixture, only the change in the TMA flux and the UV laser power can play a determinant role. Possible explanation is based on the generated methyl radical “blocking” action leading to a self-limiting deposition rate, as opposed to the enhancement of methyl desorption by hydrogenation to methane. It is shown that dilution by hydrogen decreases the carbon contamination in aluminum line.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ehrlich, D.J., Osgood, R.M. Jr, and Deutsch, T.F., IEEE J. Quantum Electron QE-16, 1233 (1980)Google Scholar
2 Hanabusa, M., Mat. Sci. Rep. 2, 51 (1987)Google Scholar
3 Osgood, R.M. and Gilgen, H.H., Ann. Rev. Mater. Sci. 15, 549 (1985)Google Scholar
4 Higashi, G.S., Blonder, G.E. and Fleming, C.G., Mat. Res. Soc. Symp. Proc. Vol. 75, 117 (1987)Google Scholar
5 Gutman, V., The Donor-Acceptor Approach to Molecular interactions (Plenum Press, New-York, 1978 pp 5051)Google Scholar
6 Gilgen, H.H., Chen, C.J., Krchnavek, R. and Osgood, R.M. Jr, in Laser Processing and Diagnostics (Proc. Int. Conf., Univ. Linz, Austria, July 1519, 1984) Springer-Verlag, 1984, p 225Google Scholar
7 Gauthier, R. and Guittard, C., Phys. Status Solidi (a) 38, 477 (1976)Google Scholar
8 Wolkenstein in Advances in Catalysis Vol. 23, Eds., Eley, D.D., Pines, H. and Weiz, P.B. (Academic Press, New-York, 1973) p 157 Google Scholar
9 Yeddanapalli, L.M. and Schubert, C.C., J. Chem. Phys. 14, 1 (1946)Google Scholar
10 Motooka, T., Gorbatkin, S., Lubben, D. and Greene, J.E., J. Appl. Phys. 58, 4397 (1985)Google Scholar
11 Suzuki, N., Anayama, C., Masu, K., Tsubouchi, K. and Mikoshiba, N. J.J. Appl. Phys. 25, 1236 (1986)Google Scholar
12 Higashi, G.S. and Rothberg, L.G., J. Vac. Sci. Technol. B3, 1460 (1985)Google Scholar
13 Bouree, J.E. and Flicstein, J., to be published in NATO ASI Series, (1988)Google Scholar
14 Personal communication from (the late) M.M. FaktorGoogle Scholar
15 Davis, L.E., Macdonald, N.C., Palmberg, P.W., Riach, G.E. and Welser, R.E. Handbook of Auger Electron Spectroscopy 2nd ed., Physical Electronics Industries, Eden Prairies Minnesota (1976)Google Scholar
16 Batra, I.P. and Kleinman, L., J. Electron Spectrosc. Related Phenomena 33, 175 (1984)Google Scholar
17 Goodman, D.W., Kelly, R.D., Madey, T.E. and Yates, J.T. Jr, J. Catal., 63, 226 (1980)Google Scholar
18 a) Bouree, J.E., Flicstein, J. and Nissim, Y.I., Mat. Res. Soc. Symp. 75, 129 (1987)b) J. Flicstein and J.E. Bouree to be publishedGoogle Scholar
19 Bouree, J.E. and Flicstein, J., this volumeGoogle Scholar
20 Cacouris, T., Scelzi, G., Beach, R., Osgood, R.M. and Krchnavek, R., CLEO, THU-14, Baltimore, USA (1987)Google Scholar
21 Rodot, M., Bouree, J.E., Le vide. Les couches minces 40, 339 (1985)Google Scholar