Skip to main content
×
Home

Lithium Dendrite Growth Control Using Local Temperature Variation

  • Asghar Aryanfar (a1), Agustín J Colussi (a2) and Michael R. Hoffmann (a2)
Abstract
ABSTRACT

We have quantified lithium dendrite growth in an optically accessible symmetric Li-metal cell, charged under imposed temperatures on the electrode surface. We have found that the dendrite length measure is reduced up to 43% upon increasing anodic temperature of about 50°C. We have deduced that imposing higher temperature on the electrode surface will augment the reduction rate relative to dendritic peaks and therefore lithium holes can draw near with the sharp deposited tips. We have addressed this mechanism via fundamentals of electrochemical transport.

Copyright
Corresponding author
*Corresponding Author: aryanfar@caltech.edu
References
Hide All
1. Tarascon J.-M. and Armand M., Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359367.
2. Armand M. and Tarascon J.M., Building better batteries. Nature, 2008. 451(7179): p. 652657.
3. Williard N., et al. ., Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability. Energies, 2013. 6(9): p. 46824695.
4. Xu K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews-Columbus, 2004. 104(10): p. 43034418.
5. Aryanfar A., et al. ., Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. The Journal of Physical Chemistry Letters, 2014: p. 17211726.
6. Mayers M.Z., Kaminski J.W., and Miller T.F. III, Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries. The Journal of Physical Chemistry C, 2012. 116(50): p. 2621426221.
7. Orsini F., Beaudoin A.D.P., B., Tarascon J.M., Trentin M., Langenhuisen N., Beer E.D., Notten P., In Situ Scanning Electron Microscopy (SEM) observation of interfaces with plastic lithium batteries. Journal of power sources, 1998. 76: p. 1929.
8. Monroe C. and Newman J., Dendrite growth in lithium/polymer systems - A propagation model for liquid electrolytes under galvanostatic conditions. Journal of the Electrochemical Society, 2003. 150(10): p. A1377-A1384.
9. Nishida T., et al. ., Optical observation of Li dendrite growth in ionic liquid. Electrochimica Acta, 2013.
10. Monroe C. and Newman J., The effect of interfacial deformation on electrodeposition kinetics. Journal of the Electrochemical Society, 2004. 151(6): p. A880-A886.
11. Aurbach D., et al. ., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002. 148(3): p. 405416.
12. Liu X.H., et al. ., Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Applied Physics Letters, 2011. 98(18).
13. Crowther O. and West A.C., Effect of electrolyte composition on lithium dendrite growth. Journal of the Electrochemical Society, 2008. 155(11): p. A806-A811.
14. Schweikert N., et al. ., Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ Li-7 nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2013. 228: p. 237243.
15. Howlett P.C., MacFarlane D.R., and Hollenkamp A.F., A sealed optical cell for the study of lithium-electrode electrolyte interfaces. Journal of Power Sources, 2003. 114(2): p. 277284.
16. Rosso M., et al. ., Onset of dendritic growth in lithium/polymer cells. Journal of Power Sources, 2001. 97-8: p. 804806.
17. Seong I.W., et al. ., The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. Journal of Power Sources, 2008. 178(2): p. 769773.
18. Stone G., et al. ., Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. Journal of The Electrochemical Society, 2012. 159(3): p. A222-A227.
19. Brissot C., et al. ., In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. Journal of the Electrochemical Society, 1999. 146(12): p. 43934400.
20. Brissot C., et al. ., Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources, 1999. 81: p. 925929.
21. Chazalviel J.N., Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits. Physical Review A, 1990. 42(12): p. 73557367.
22. Park H.E., Hong C.H., and Yoon W.Y., The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries. Journal of Power Sources, 2008. 178(2): p. 765768.
23. Diggle J., Despic A., and Bockris J.M., The mechanism of the dendritic electrocrystallization of zinc. Journal of The Electrochemical Society, 1969. 116(11): p. 15031514.
24. Brissot C., et al. ., Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling. Journal of Power Sources, 2001. 94(2): p. 212218.
25. Bard A.J., and Faulkner Larry R.., Electrochemical methods: fundamentals and applications. 1980. 2 New York: Wiley, 1980.
26. Akolkar R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 8489.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 80 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.