Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T04:15:42.028Z Has data issue: false hasContentIssue false

Local Basis Gw Calculations and the Dielectric Response of Si and C Clusters

Published online by Cambridge University Press:  15 February 2011

Ming Yu
Affiliation:
Department of Physics and Astronomy, and Condensed Matter and Surface Sciences Program, Ohio University, Athens, OH 45701-2979
Sergio E. Ulloa
Affiliation:
Department of Physics and Astronomy, and Condensed Matter and Surface Sciences Program, Ohio University, Athens, OH 45701-2979
Sang H. Yang
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, 2950 P St. WPAFB, OH 45433-7765
Get access

Abstract

We describe our progress in developing an ab initio computational scheme for the calculation of the dielectric response function of solids, with special emphasis here on Si and C clusters. All calculations are carried out employing a basis of localized atomic-like orbitals and include the evaluation of quasiparticle corrections. The self-energy operator is evaluated in the GW approximation, with a full frequency dependence for the dielectric matrix. The approach is convenient and computationally optimal for the calculation of optical properties of complex systems lacking full periodicity, such as surfaces and clusters. We present here the dielectric response functions of clusters with structures found after full equilibration via molecular dynamical simulations, and discuss the sensitivity of the optical properties to quasiparticle corrections.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Johnson, D. L., Phys. Rev. B 9, 4475 (1974); V. I. Gavrilenko and F. Bechsted, Phys. Rev. B 54, 13416 (1996); W. L. Mochan and R. G. Barrera, Phys. Rev. Lett. 56, 2221 (1986).Google Scholar
[2] Hedin, L., Phys. Rev. 139, A796 (1965); F. Aryasetiawan and 0. Gunnarsson, Rep. Progr. Phys. 61, 237 (1998); W. G. Aulbur, L. Jhnsson, and J. W. Wilkins, to appear in Solid State Phys., 54, (1999).Google Scholar
[3] Sankey, O. F. and Niklewski, D. J., Phys. Rev. B 40, 3979 (1989); A. A. Demkov, J. Ortega, O. F. Sankey, and M. P. Grumbach, Phys. Rev. B 52, 1618 (1995).Google Scholar
[4] Sinchez-Portal, D., Artacho, E., and Soler, J. M., Solid State Communications 95, 685 (1995); J. Phys.: Cond. Matt. 8, 3859 (1996).Google Scholar
[5] Yang, Sang H., Phys. Rev. B 58, 1832 (1998).Google Scholar
[6] Hybertsen, M. S. and Louie, S. G., Phys. Rev. B 34, 5390 (1986); R. W. Godby, M. Schliiter, and L. J. Sham, Phys. Rev. B 37, 10159 (1988).Google Scholar
[7] Ceperley, D. M. and Alder, G. J., Phys. Rev. Lett. 45, 566 (1980); J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
[8] Yu, M., Ulloa, S. E., and Drabold, D. A., to appear in Phys. Rev. B (2000).Google Scholar
[9] Ajie, H. et al. , J. Phys. Chem. 94, 8630 (1990); H. Kataura et al., J. Phys. Chem. Solids 58, 1913 (1997).Google Scholar
[10] See, for example, Shirley, E.L. and Louie, S.G., Phys. Rev. Lett. 71, 133 (1993).Google Scholar
[11] Song, J., Ulloa, S. E., and Drabold, D. A., Phys. Rev. B 53, 8042 (1996).Google Scholar
[12] Shimizu-Iwayama, T., Kurumado, N., Hole, D. E., and Townsend, P. D., J. Appl. Phys. 83, 6018 (1998).Google Scholar
[13] Rohlfing, M. and Louie, S. G., Phys. Rev. Lett. 81, 2312 (1998); S. Albrecht et al., Phys. Rev. Lett. 80, 4510 (1998); s. Öĝüt, J. R. Chelikowsky, and S. G. Louie, Phys. Rev. Lett. 79, 1770 (1997).Google Scholar