Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T00:56:41.659Z Has data issue: false hasContentIssue false

Local structure around Er in MeV Er-implanted silica

Published online by Cambridge University Press:  15 February 2011

A. Polman
Affiliation:
AT&T Bell Laboratories, 600, Mountain Avenue, Murray Hill, NJ 07974, USA FOM-Institute for Atomic and Molecular Physics, P.O. Box 418831098 SJ Amsterdam, The Netherlands
M. A. Marcus
Affiliation:
AT&T Bell Laboratories, 600, Mountain Avenue, Murray Hill, NJ 07974, USA
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, 600, Mountain Avenue, Murray Hill, NJ 07974, USA
J. M. Poate
Affiliation:
AT&T Bell Laboratories, 600, Mountain Avenue, Murray Hill, NJ 07974, USA
Get access

Abstract

Amorphous SiO2 films, 10 μm thick, were grown on Si(100) substrates and subsequently implanted with 5.0×1015 Er ions/cm2 at an energy of 3.5 MeV. When optically pumped at λ = 488 nm, the implanted films show a sharply peaked photoluminescence spectrum centred around λ. = 1.54 μm, corresponding to an intra-4f transition of Er3+. Thermal treatment at temperatures above 700 °C is needed to anneal out the implantation-induced defects and attain a maximum PL intensity and luminescence lifetime (15 ms). Extended x-ray absorption fine structure (EXAFS) spectra of Er-implanted bulk silica samples (3.4×1016 ions/cm2, 2.9 MeV) indicate that the Er has six O first neighbours at a distance around 2.25 Å. The results are similar to those for bulk samples doped with Er in the molten phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Miniscalco, W.J., J. Lightwave Technol. 9, 234 (1991).CrossRefGoogle Scholar
2 Ainslie, B.J., J. Lightwave Technol. 9, 220 (1991).10.1109/50.65880CrossRefGoogle Scholar
3 Lee, H.J., Henry, C.H., Orlowsky, K.J., Kazarinov, R.F., and Kometani, T.Y., Appl. Opt. 27, 4104 (1988).CrossRefGoogle Scholar
4 Henry, C.H., Blonder, G.E., and Kazarinov, R.F., J. Lightwave Technol. 7, 1530 (1989).CrossRefGoogle Scholar
5 Boyd, J.T., Ed., Integrated Optics: Devices and Applications (IEEE, New York, 1990).Google Scholar
6 Polman, A., Jacobson, D.C., Eaglesham, D.J., Kistler, R.C., and Poate, J.M., Joum. of Appl. Phys. 70, 3778 (1991).10.1063/1.349234CrossRefGoogle Scholar
7 Polman, A., Jacobson, D.C., Lidgard, A., Poate, J.M., and Arnold, G.W., Nucl. Instr. and Meth. B59/60, 1313 (1991).10.1016/0168-583X(91)95819-YCrossRefGoogle Scholar
8 Lidgard, A., Polman, A., Jacobson, D.C., Blonder, G.E., Kistler, R.C., Poate, J.M., and Becker, P.C., Electron. Lett. 27, 993 (1991).10.1049/el:19910619CrossRefGoogle Scholar
9 Marcus, M.A. and Polman, A., Joum. of Non-Cryst. Solids, in press.Google Scholar
10 Lee, P.A., Citrin, P.H., Eisenberger, P., and Kincaid, B.M., Rev. Mod. Phys. 53, 769 (1981).10.1103/RevModPhys.53.769CrossRefGoogle Scholar
11 Hüfner, S., Optical Spectra of Transparent Rare-Earth Compounds (Academic, New York, 1978).Google Scholar
12 Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70, 2672 (1991) and references thereinCrossRefGoogle Scholar
13 Miniscalco, W.J., Journ. Lightwave Tech. 9, 234 (1991).CrossRefGoogle Scholar
14 Shi, C., Tan, M., and Tombrello, T.A., J. Non-Crystl. Solids 104, 85 (1988).Google Scholar
15 Katenkamp, U., Karge, H., and Prager, R., Radiat. Eff. 48, 31 (1980).10.1080/00337578008209224CrossRefGoogle Scholar
16 Arnold, G.W. and Mazzoldi, P., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G.W. (Elsevier, Amsterdam, 1987).Google Scholar
17 Polman, A., Jacobson, D.C. and Poate, J.M., Mat. Res. Soc. Proc. 235, in press.Google Scholar
18 Nagasima, N., J. Appl. Phys. 43, 338 (1972).CrossRefGoogle Scholar