Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-17T09:47:39.628Z Has data issue: false hasContentIssue false

Long-Period Ordered Structures of the Au-Rich Au-Mn Alloys

Published online by Cambridge University Press:  21 February 2011

D. Watanabe
Affiliation:
Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan
O. Terasaki
Affiliation:
Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan
Get access

Abstract

Changes in the ordered structures of the Au-Mn system, existing at temperatures below 400°C, with composition have been studied in the range of 20–28 at.% Mn by high-resolution electron microscopy. The superstructures, Au4Mn, Au22Mn6, Au31Mn9 and 2d-APS(I), exist in the range of 20–23 at.% Mn. The Au22Mn6 and Au31Mn9 are the one-dimensional (ld) and two-dimensional (2d) antiphase structure (APS), respectively, based on the Au4Mn, and the 2d-APS(I) is based on the DO22 structure and consists of parallelogram and lozenge shaped domains. When Mn content increases, the Mn-Mn nearest-neighbour pairs are formed across the antiphase boundaries of the 2d-APS(I), and the structure changes to orthorhombic 2d-Au3Mn at about 24 at.% Mn. When Mn content increases further, the Mn-Mn pairs align in the <120> direction and the structure transforms continuously to the monoclinic Au5Mn2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watanabe, D., Acta Cryst. 10, 483485 (1957).Google Scholar
2. Humble, S.G., Acta Cryst. 17, 14851486 (1964).Google Scholar
3. Sato, H., Toth, R.S. and Honjo, G., J. Phys. Chem. Solids 28, 137160 (1967).Google Scholar
4. Watanabe, D., J. Phys. Soc. Jpn. 15, 10301040 (1960).Google Scholar
5. Belbeoch, B., Frisby, H., Gaignebet, N., Kleinberger, R. and Roulliay, M., Acta Cryst. A 32, 415426 (1976).Google Scholar
6. Hiraga, K., Shindo, D., Hirabayashi, M., Terasaki, O. and Watanabe, D., Acta Cryst. B 36, 25502554 (1980).Google Scholar
7. Terasaki, O., Watanabe, D., Hiraga, K., Shindo, D. and Hirabayashi, M., Micron 11, 235240 (1980).Google Scholar
8. Hiraga, K., Hirabayashi, M., Terasaki, O. and Watanabe, D., Acta Cryst. A 38, 269274 (1982).Google Scholar
9. Terasaki, O., Watanabe, D., Hiraga, K., Shindo, D. and Hirabayashi, M., J. Appl. Cryst. 14, 392400 (1981).Google Scholar
10. Van Tendeloo, G. and Amelinckx, S., phys. stat. sol. (a) 65, 7386 (1981).Google Scholar
11. Terasaki, O. and Watanabe, D., J. Appl. Cryst. 15, 282288 (1982).Google Scholar
12. Van Tendeloo, G., Van Landuyt, J. and Amelinckx, S., phys. stat. sol. (a) 70, 145158 (1982).Google Scholar
13. Van Tendeloo, G. and Amelinckx, S., phys. stat. sol. (a) 71, 185192 (1982).Google Scholar
14. Kanamori, J. and Kakehashi, Y., J. Phys. (Paris) 38, C-7, 274279 (1977).Google Scholar