Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-17T22:32:56.048Z Has data issue: false hasContentIssue false

Low Energy K-Dependent Electronic Structure of the Layered Magnetoresistive Oxide La1.2Sr1.8Mn2O7

Published online by Cambridge University Press:  10 February 2011

T. Saitoh
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80303–0390
D. S. Dessau
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80303–0390
C.-H. Park
Affiliation:
Department of Applied Physics, Stanford University, Stanford, CA 94305
Z.-X. Shen
Affiliation:
Department of Applied Physics, Stanford University, Stanford, CA 94305
P. Villella
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80303–0390
N. Hamada
Affiliation:
Joint Research Center for Atom Technology, Tsukuba 305, JAPAN
Y. Moritomo
Affiliation:
Joint Research Center for Atom Technology, Tsukuba 305, JAPAN
Y. Tokura
Affiliation:
Joint Research Center for Atom Technology, Tsukuba 305, JAPAN Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, JAPAN
Get access

Abstract

We have studied the fc-dependent electronic structure of the layered colossal magnetoresistive manganite La1.2Sr1.8Mn2O7 using high-resolution angle-resolved photoemission spectroscopy. We found dispersive energy bands as a function of the crystal momentum k near the Fermi level (EF). We have also performed local spin density approximation (LSDA)+U band-structure calculations on the current system. The overall experimental dispersion relation is basically in agreement with the band-structure calculations yet close to EF there is a significant deviation from the predicted dispersions. Instead of clear Fermi-surface (FS) crossings, we observe a depression of the features as the FS is approached as if there is a “pseudo” gap in the excitation spectrum. The pseudogap continuously opens with temperature and does not show further significant opening above Tc, corresponding to the metal-insulator transition. Those unusual aspects of the spectra has been discussed from the viewpoint of the strong electron-lattice coupling model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Küsters, R. M., Singleton, J., Keen, d. A., McGreevy, R., and Hayes, W., Physica B 155, 362 (1989);Google Scholar
Tokura, Y., Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Furukawa, N., J. Phys. Soc. Jpn. 63, 3931 (1994);Google Scholar
Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R., Ramesh, R., and Chen, L. H., Science 264, 413 (1994).Google Scholar
2. Zener, C., Phys. Rev. B 82, 403 (1951);Google Scholar
de Gennes, P.-G., Phys. Rev. 118, 141 (1960);Google Scholar
Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
3. Millis, A. J., Shraiman, B. I., and Mueller, R., Phys. Rev. Lett. 77, 175 (1996);Google Scholar
Millis, A. J., Mueller, R., and Shraiman, B. I., Phys. Rev. B 54, 5389 (1996);Google Scholar
Millis, A. J., Mueller, R., and Shraiman, B. I., Phys. Rev. B 54, 5405 (1996).Google Scholar
4. Billinge, S. J. L., DiFrancesco, R. G., Kwei, G. H., Neumeier, J. J., and Thompson, J. D., Phys. Rev. Lett. 77, 715 (1996);Google Scholar
Booth, C. H., Bridges, F., Synder, G. J., and Geballe, T. H., Phys. Rev. B 54, R15606 (1996);Google Scholar
Zhao, G., Conder, K., Keller, H., and Müller, K. A., Nature 381, 676 (1996);Google Scholar
Louca, D., Egami, T., Brosha, E. L., Roder, H., and Bishop, A. R., Phys. Rev. B 56, R8475 (1997).Google Scholar
5. Hamada, N. et al (unpublished). A U of 2 eV was used for this calculation. Compared to a U of 0, a gap at EF is opened in the down-spin bands, and only very small effects are found in the up-spin bands.Google Scholar
6. Moritomo, Y., Asamitsu, A., Kuwahara, H., and Tokura, Y., Nature 380, 141 (1996).Google Scholar
7. Park, C.-H., Dessau, D. S., Saitoh, T., Shen, Z.-X., Moritomo, Y., and Tokura, Y. (preprint);Google Scholar
Dessau, D. S., Saitoh, T., Park, C.-H., Shen, Z.-X., Moritomo, Y., and Tokura, Y., appear in Science and Technology of Magnetic Oxides, edited by Hundley, M., Nickel, J., Ramesh, R., and Tokura, Y. (Mater. Res. Soc. Proc).Google Scholar
8. Ishikawa, T., Kimura, T., Katsufuji, T., and Tokura, Y. (preprint).Google Scholar
9. Sarma, D. D., Shanthi, N., Krishnakumar, S. R., Saitoh, T., Mizokawa, T., Sekiyama, A., Kobayashi, K., Fujimori, A., Weschke, E., Meier, R., Kaindl, G., Takeda, Y., and Takano, M., Phys. Rev. B, 53, 6874 (1996);Google Scholar
Park, J.-H., Chen, C. K., Cheong, S.-W., Bao, W., Meigs, G., Chakarian, V., and Idzerda, Y. U., Phys. Rev. Lett. 76, 4215 (1996).Google Scholar
10. Okimoto, Y., Katsufuji, T., Ishikawa, T., Arima, T., and Tokura, Y., Phys. Rev. B 55, 4206 (1997).Google Scholar
11. Saitoh, T., Dessau, D. S., Park, C.-H., Shen, Z.-X., Villella, P., Kimura, T., Moritomo, Y., and Tokura, Y. (unpublished).Google Scholar
12. Marshall, D. S., Dessau, D. S., Loeser, A. G., Park, C.-H., Matsuura, A. Y., Eckstein, J. N., Bozovic, I., Fournier, P., Kapitulnik, A., Spicer, W. E., and Shen, Z.-X., Phys. Rev. Lett. 76, 4841 (1996);Google Scholar
Loeser, A. G. Shen, Z.-X., Dessau, D. S., Marchall, D. S., Park, C.-H., Fournier, P., and Kapitulnik, A., Science 273, 325 (1996);Google Scholar
Ding, H., Yokoya, T., Campuzano, J. C, Takahashi, T., Randeria, M., Norman, M. R., Mochiku, T., Kadowaki, K., Giapintzakis, J., Nature 382, 51 (1996);Google Scholar
Shen, Z.-X. and Schrieffer, J. R., Phys. Rev. Lett. 78, 1771 (1997).Google Scholar
13. Mahan, G. D., Many Particle Phvsics. 2nd ed. (Plenum Press, New York, 1990), p. 293.Google Scholar
14. Hiifner, S., Photoelectron Spectroscopy. (Springer-Verlag, Berlin, 1995), p. 150.Google Scholar
15. Shen, Z.-X. and Dessau, D. S., Physics Reports 253, 1 (1995).Google Scholar