Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-28T20:12:25.186Z Has data issue: false hasContentIssue false

Low Si-OH ORMOCER®s for Dielectrical and Optical Interconnection Technology

Published online by Cambridge University Press:  01 February 2011

Ralf Buestrich
Affiliation:
Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, D-97082 Würzburg, Germany
Frank Kahlenberg
Affiliation:
Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, D-97082 Würzburg, Germany
Michael Popall*
Affiliation:
Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, D-97082 Würzburg, Germany
Adelheid Martin
Affiliation:
Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, D-97082 Würzburg, Germany
Oliver Rösch
Affiliation:
Robert Bosch GmbH, D-70049 Stuttgart, Germany
*
# Author to whom correspondence should be addressed
Get access

Abstract

ORMOCER®*s (inorganic-organic hybrid polymers) with low Si-OH content were synthesized by a new sol-gel route. Optimization of the sol-gel process parameters (catalyst, temperature etc.) was performed in order to achieve reproducible low cost materials which are photo-patternable even in higher layer thicknesses up to 150 μm within one step without cracking or delamination. The materials combine low losses in the NIR region (0.2 dB/cm at 1310 nm and 0.5 dB/cm at 1550 nm without fluorination!) with low dielectric constants (3.3 at 10 kHz).

Beside the dielectric and optical properties the materials have a variety of additional advantages for interconnection technology: good wetting and adhesion on various substrates (e.g. glass, silicon and several polymers), low processing temperatures (postbake below 160 °C), high thermal stability (up to 270 °C) and a tunable refractive index.

Details of chemical synthesis and characterization as well as photo-lithographic processing of ORMOCER® materials are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Popall, M., Dabek, A., Robertsson, M. E., Gustafsson, G., Hagel, O.-J., Olsowski, B., Buestrich, R., Cergel, L., Lebby, M., Kiely, P., Joly, J., Lambert, D., Schaub, M. and Reichl, H., Proc. 48th Electronic Components and Technology Conference, Seattle, WA, 10181025 (1998).Google Scholar
[2] Rösch, O. S., Bernhard, W., Müller-Fiedler, R., Buestrich, R., Roscher, C., Popall, M., Dannberg, P., Pompe, G., and Neyer, A., Proc. Polymer Optical Fibres and Applications Conference (POF), Berlin, 332338 (1998).Google Scholar
[3] Rösch, O. S., Bernhard, W., Müller-Fiedler, R., Dannberg, P., Bräuer, A., Buestrich, R. and Popall, M., Proc. 44th SPIE-meeting, 3799, 214224 (1999).Google Scholar
[4] Seddon, A. B., Critical Rew. Conf. Sol-Gel and Polymer Photonic Devices Proc. CR68, San Diego, 143171, (1997).Google Scholar
[5] Del Monte, F., Cheben, P., Grover, C. P. and McKenzie, J. D., J. Sol-Gel Sci. Technol., 7385 (1999).Google Scholar
[6] a) Buestrich, R., Kahlenberg, F., Popall, M., Dannberg, P., Müller-Fiedler, R., Rösch, O. S., Proc. EUROMAT '99 13 (1999). b) J. Sol-Gel Sci. Technol., (2000) (to be published).Google Scholar
[7] Wipfelder, E. and Höhn, K., Angew. Makromol. Chem., 218, 111126 (1994).Google Scholar
[8] Brunet, F., J. Non-Cryst. Solids, 231, 5877 (1998).Google Scholar
[9] Hoebbel, D., Reinert, T. and Schmidt, H., J. Sol-Gel Sci. Technol., 7, 217224 (1996).Google Scholar