Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T19:58:15.140Z Has data issue: false hasContentIssue false

Luminescence energy and carrier lifetime as a function of applied biaxial strain in InGaN/GaN quantum-well structures

Published online by Cambridge University Press:  01 February 2011

Noad A. Shapiro
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, 1 Cyclotron Road, Berkeley, California 94720
Henning Feick
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, 1 Cyclotron Road, Berkeley, California 94720
William Hong
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, 1 Cyclotron Road, Berkeley, California 94720
Nathan F. Gardner
Affiliation:
LumiLeds Lighting, San Jose, California 95131
Werner K. Goetz
Affiliation:
LumiLeds Lighting, San Jose, California 95131
J.W. Yang
Affiliation:
APA Optics, Blaine, MN 55449
Eicke R. Weber
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, 1 Cyclotron Road, Berkeley, California 94720
Get access

Abstract

Photoluminescence (PL) and Time-resolved PL (TR-PL) are used to measure the luminescence energy and carrier lifetime of InGaN/GaN quantum well (QW) structures as a function of biaxial strain and excitation density. A blueshift of the transition energy and a decrease in the carrier lifetime reveal a field-dependent spatial electron-hole (e-h) wavefunction separation. This behavior is observed both under the application of tensile, biaxial strain, which directly affects the piezo-related field, and under increased excitation density, which effectively screens the electric field. Our results show an increased carrier separation with increasing QW thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Narukawa, Y., Kawakami, Y., Fujita, S. and Fujita, S., Phys. Rev. B 55, R1938 (1996).Google Scholar
[2] Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys 36, L382 (1997).Google Scholar
[3] Shapiro, N. A., Kim, Y., Feick, H., Weber, E. R., Perlin, P., Yang, J. W., Akasaki, I., and Amano, H., Phys. Rev. B 62, 16318 (2000)Google Scholar
[4] Perlin, P., Kisielowski, C., Iota, V., B.A. Weinstein, Mattos, L., Shapiro, N.A., Krueger, J., Weber, E.R., Yang, J., Appl. Phys. Lett. 73, 2778 (1998)Google Scholar
[5] Hangleiter, A., Seo, J. Im, Kollmer, H., Heppel, S., Off, J., Ferdinand Scholz, MRS Internet J. Nitride Semicond. Res. 3, 15 (1998)Google Scholar
[6] Fiorentini, V., Bernardini, F., Sala, F. D., Carlo, A. D., and Lugli, P, Phys. Rev. B 60, 8849 (1999)Google Scholar
[7] Berkowicz, E., Gershoni, D., Bahir, G., Lakin, E., Shilo, D., Zolotoyabko, E., Abare, A. C., Denbaars, S. P., and Coldren, L. A., Phys. Rev. B 61, 10994 (2000)Google Scholar
[8] Lefebvre, P., Morel, A, Gallart, M., Taliercio, T., Allegre, J., Gil, B., Mathew, H., Damilano, B., Grandjean, N., and Massies, J., Appl. Phys. Lett. 78, 1252 (2001)Google Scholar
[9] Fiorentini, V., Bernardini, F., and Ambacher, O., Appl. Phys. Lett. 80, 1204 (2002)Google Scholar