Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-07T20:06:20.866Z Has data issue: false hasContentIssue false

Luminescent Nanometer-Sized Si Crystals Formed in an amorphous Silicon Dioxide Matrk by Ion Implantation and Annealing

Published online by Cambridge University Press:  21 February 2011

T.S. Iwayama
Affiliation:
Department of Materials Science, aichi University of Education, Igaya-cho, Kariya-shi, aichi 448
Y. Terao
Affiliation:
Department of Materials Science, aichi University of Education, Igaya-cho, Kariya-shi, aichi 448
A. Kamiya
Affiliation:
Department of Materials Science, aichi University of Education, Igaya-cho, Kariya-shi, aichi 448
M. Takeda
Affiliation:
Department of Materials Science, aichi University of Education, Igaya-cho, Kariya-shi, aichi 448
S. Nakao
Affiliation:
Japan "National industrial Research institute of Nagoya, Kita-ku, Nagoya 462, Japan
K. Saitoh
Affiliation:
Japan "National industrial Research institute of Nagoya, Kita-ku, Nagoya 462, Japan
Get access

Abstract

Si ion implantation followed by thermal annealing has been used to synthesize luminescent nanometer-sized Si crystals in an amorphous Si02 matrix. Transmission electron microscopy indicates the formation of Si nanocrystals by annealing at 1100 °C, and the growth in average size of Si nanocrystals with increasing annealing time. the shape of the emission spectrum of the photoluminescence is found to be independent of both excitation energy and annealing time, while the excitation spectrum of photoluminescence increases as the photon energy increases and its shape depends on annealing time. the results indicate that the photons are absorbed by Si nanocrystals, for which the band-gap energy is modified by the quantum confinement effects, and the emission of photons is not due to direct electron-hole recombination inside Si nanocrystals but is related to defects probably at the interface between Si nanocrystals and Si02.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
3 DiMaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., and Cutro, J.A., J. appl. Phys. 56, 401 (1984).Google Scholar
4 Furukawa, S. and Miyasato, T., Jpn. J. appl. Phys. 27, L2207, (1988).Google Scholar
5 Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
6 Morisaki, H., Ping, F.W., H. ono, and Yazawa, K., J. appl. Phys. 70, 1869 (1991).Google Scholar
7 Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 32, 3840 (1993).Google Scholar
8 Ziegler, J.F., Ion Implantation Technology, Ziegler, J.F. (ed.) p. 1 (North-Holland, Amsterdam, 1992).Google Scholar
9 Becker, K., Yang, L., Haglund, R.F. Jr, Magruder, R.H., Weeks, R.A., and Zuhr, R.A., Nucl. INstrum. Methods B59/60, 1304 (1991).Google Scholar
10 Hosono, H., Abe, Y., Y.Lee, L., Tokizaki, T., and Nakamura, A., Appl. Phys. Lett. 61, 2747 (1992).Google Scholar
11 Takeda, Y., Hioki, T., Motoshiro, T., and Noda, S., Appl. Phys. Lett. 63, 3420 (1993).Google Scholar
12 Shimizu, T.-Iwayama, Ohshima, M., Niimi, T., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Phys.: Condens. Matter 5, L375 (1993).Google Scholar
13 Atwater, H.A., Shcheglov, K.V., Wong, S.S., Vahala, K.J., Flagan, R.C., Brongersma, M.L., and A. Polman, Mat. Res. Soc. Symp. Proc. 316, 409 (1994).Google Scholar
14 Shimizu, T.-Iwayama, Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. appl. Phys. 75, 7779 (1994).Google Scholar
15 Itoh, N., Shimizu-Iwayama, T., and Fujita, T., J. Non-cryst. Solids 179, 194 (1994).Google Scholar
16 Shimizu, T.-Iwayama, Nakao, S., and Saitoh, K., Appl. Phys. Lett. 65, 1814 (1994).Google Scholar
17 Shimizu-Iwayama, T., Nakao, S., Saitoh, K., and Itoh, N., Phys, J..: Condens. Matter 6, L601 (1994).Google Scholar
18 Shimizu-Iwayama, T., Nakao, S., and Saitoh, K., J, Jpn.. Appl. Phys. Suppl. 34–1, 86 (1995).Google Scholar
19 Ziegler, J.F., Biersack, J.P., and U.Littmark, , The Stopping and Range of Ions in Solids vol.1 (Pergamon, New York, 1985).Google Scholar
20 Takagahara, T. and Takeda, K., Phys. Rev. B46, 15578 (1992).Google Scholar
21 Griscom, D.L., Proc. 3rd int. Frequency Control Symposium p.98 (Electronic industries association, Washington D.C., 1979).Google Scholar
22 Trukhin, A.N., Sov. Phys. Solid State 21, 644 (1979).Google Scholar
23 Itoh, C., Tanimura, K., Itoh, N., and Itoh, M., Phys. Rev. B 39, 11183 (1989).Google Scholar
24 Shluger, A.L., J. Phys. C 21, L432 (1988).Google Scholar
25 Shluger, A. and Stefanovich, E., Phys. Rev. B 42, 9664 (1990).Google Scholar
26 Itoh, N., Tanimura, K., and Itoh, C., The Physics and Technology of a morphous Si02 , Devine, R.A.B. (ed.) p. 135 (Plenum, New York, 1988).Google Scholar