Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T17:10:17.201Z Has data issue: false hasContentIssue false

Magnetic X-Ray Circular Dichroism in Fe Co Pt Multilayers

Published online by Cambridge University Press:  15 February 2011

J. G. Tobin
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
A. F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
G. D. Waddill
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
P. A. Sterne
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550 University of California, Davis, CA 95616
Get access

Abstract

Magnetic x-ray circular dichroism in x-ray absorption has been used to investigate the ternary multilayer system, Fe Co Pt. Samples were prepared by planar magnetron sputter deposition and carefully characterized, using a variety of techniques such as grazing-incidence and high-angle x-ray scattering, Auger depth profiling and cross-section transmission electron microscopy. As previously reported, the Fe9.5Å Pt9.5Å exhibits a large dichroism in the Fe 2p absorption. Interestingly while the Co9.5Å Pt9.5Å has no measurable dichroism, the Fe4.7Å Co4.7Å Pt9.5Å sample has a dichroism at both the Fe 2p and Co 2p absorption edges. These and other results will be compared to slab calculation predictions. Possible explanations will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Falicov, L.M., Pierce, D.T., Bader, S.D., Gronsky, R., Hathaway, K.B., Hopster, H.J., Lambeth, D.N., Parkin, S.S.P., Prinz, G., Salamon, M., Schuller, I.K., and Victora, R.H., J. Mat. Res. 5, 1299 (1990).Google Scholar
2. Avalos, G., San Ramon Valley Times, Friday, August 20, 1993.Google Scholar
3. Pool, R., Science 261, 984 (20-AUG-1993).CrossRefGoogle Scholar
4. Hylton, T.L., Coffey, K.R., Parker, M.A., and Howard, J.K., Science 261, 1021 (20-AUG-1993).Google Scholar
5. Parkin, S.S.P., Phys. Rev. Lett. 71, 1641 (1993).Google Scholar
6. Ehrlich, A.C., Phys. Rev. Lett. 21, 2300 (1993).Google Scholar
7. Grolier, V., Renard, D., Bartenlian, B., Beauvillian, P., Chappert, C., Dupas, C., Ferre, J., Galtier, M., Kolb, E., Mulloy, M., Renard, J.P., and Veillet, P., Phys. Rev. Lett. 71, 3023 (1993).Google Scholar
8. Gurney, B.A., Speriosu, V.S., Nozieres, J.P., Lefakis, H.F., Wilhoit, D.R., and Need, D.U., Phys. Rev. Lett. 71, 4023 (1993).CrossRefGoogle Scholar
9. Dieny, B., Speriosu, V.S., Metin, S., Parkin, S.S.P., Gurney, B.A., Baumgart, P., and Wilhoit, D.R., J. Appl. Phys. 69, 4774 (1991).Google Scholar
10. Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., and Mauri, D., Phys. Rev. B 43, 1297 (1991).CrossRefGoogle Scholar
11. Schutz, G., Wagner, W., Wilhelm, W., Keinle, P., Zeller, R., Frahm, R., and Materlik, G., Phys. Rev. Lett. 58, 737 (1987); G. Schutz, M. Knulle, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, and R. Frahn, Z. Phys. B 73, 67 (1988); G. Schutz, R. Frahm, P. Mautner, R. Wienke, W. Wagner, W. Wilhelm, and P. Kienle, Phys. Rev. Lett. 62, 2620 (1989).Google Scholar
12. Chen, C.T., Sette, F., Ma, Y., and Modesti, S., Phys. Rev. B 42, 7262 (1990); C.T. Chen, Y.U. Idzerda, H.J. Lin, G. Meigs, A. Chaiken, G.A. Prinz, and G.H. Ho, Phys. Rev. B 48, 642 (1993).Google Scholar
13. Tobin, J.G., Waddill, G.D., and Pappas, D.P., Phys. Rev. Lett. 68,3642 (1992).Google Scholar
14. Wu, Y., Stohr, J., Hermsmeier, B.D., Samant, M.G., and Weller, D., Phys. Rev. Lett. 69, 2307 (1992).CrossRefGoogle Scholar
15. Stohr, J., Wu, Y., Hermsmeier, B.D., Samant, M.G., Harp, G.R., Koranda, S., Dunham, D., and Tonner, B.P., Science 259, 658 (29-JAN-1993).Google Scholar
16. Baumgarten, L., Schneider, C.M., Petersen, M., Schafers, F., and Kirschner, J., Phys. Rev. Lett. 65, 492(1990).Google Scholar
17. Waddill, G.D., Tobin, J.G., and Pappas, D.P., Phys. Rev. B 46, 552 (1992).Google Scholar
18. Waddill, G.D., Tobin, J.G., and Jankowski, A.F., J. App. Phys. 74, 6999 (1993).CrossRefGoogle Scholar
19. Skriver, Hans L., LMTD Method, Springer-Verlag, Berlin, 1984.Google Scholar
20. Jankowski, A.F., Waddill, G.D., and Tobin, J.G., Mat. Res. Soc. Symp. Proc. 313, 227 (1993).Google Scholar
21. Jankowski, A.F., Waddill, G.D., and Tobin, J.G., J. Vac. Sci. Tech. A, (May 1994).Google Scholar
22. Terminello, L.J., Waddill, G.D., and Tobin, J.G., Nuc. Instrum. Meth. A319,271 (1992).Google Scholar
23. Tirsell, K.G. and Karpenko, V., Nuc. Instrum. Meth. A291, 551 (1990).Google Scholar