Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T04:45:14.359Z Has data issue: false hasContentIssue false

A Main Factor Determining the Uniform Step Coverage in Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

Chee Burm Shin
Affiliation:
Dept. of Chemical Engineering, Ajou University, Suwon 442-749, Korea
Gyeong Soon Hwang
Affiliation:
Div. of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Profile evolution simulations during chemical vapor deposition based on a 2-D continuum model reveal that the type of surface kinetics plays an important role as a measure of determining step coverage of films deposited in a high aspect ratio trench or via. The linear surface kinetics, resulting from adsorption rate limitation, is found to be difficult to bring about conformal step coverage in a deep narrow trench without reducing the growth rate considerably; that is, under such a condition void free filling can not be achievable with holding an appropriate growth rate. High tendency of the precursor for chemical equilibrium on a surface, tending to cause the non-linear surface kinetics by surface reaction limitation, is mainly responsible for the significant improvement of step coverage in TEOS-based depositions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuura, M., Hayashide, Y., Kotani, H., and Abe, H., Jpn. J. Appl. Phys. 30, 1530 (1991).Google Scholar
2. Fujino, K., Nishimoto, Y., Tokumasu, N., and Maeda, K., J. Electrochem. Soc. 139, 2282 (1992).10.1149/1.2221216Google Scholar
3. Oh, H. J., Rhee, S. W., and Kang, I. S., J. Electrochem. Soc. 139, 1714 (1992).Google Scholar
4. Li, J., McVittie, J. P., Ferziger, J., and Saraswat, K. C., J. Vac. Sci. Technol. B 13, 1867 (1995).Google Scholar
5. Becker, F. S., Pawlik, D., Anzinger, H., and Spitzer, A., J. Vac. Sci. Technol. B 5, 1555 (1987).Google Scholar
6. Sorita, T., Shiga, S., Ikuta, K., Egashira, Y., and Komiyama, H., J. Electrochem. Soc. 140, 2952 (1993).Google Scholar
7. Chang, C.-P., Pai, C. S., and Hsieh, J. J., J. Appl. Phys. 67, 2119 (1990).Google Scholar
8. Selamoglu, N., Mucha, J. A., Ibbotson, D.E., and Flamm, D. L., J. Vac. Sci. Technol. B 7, 1345 (1989).Google Scholar
9. Stout, P. J. and Kushner, M. J., J. Vac. Sci. Technol. A 11, 2562 (1993).10.1116/1.578607Google Scholar
10. Wickramanayaka, S. and Nakanishi, Y., and Hatanaka, Y., App. Surf. Sci. 113, 670 (1997).Google Scholar
11. Sze, S. M., VLSI Technology, 2nd ed. (McGraw-Hill, New York, 1988), pp. 252255.Google Scholar
12. Cheng, L.-Y., McVittie, J. P., and Saraswat, K. C., Appl. Phys. Lett. 58, 2147 (1991).10.1063/1.104988Google Scholar
13. Raupp, G. B., Shemansky, F. A., and Cale, T. S., J. Vac. Sci. Technol. B 10, 2422 (1992).Google Scholar
14. Adams, A. C. and Capio, C. D., J. Electrochem. Soc. 126, 1042 (1979).Google Scholar