Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T05:09:47.378Z Has data issue: false hasContentIssue false

Materials and scaling effects on on-chip interconnect reliability

Published online by Cambridge University Press:  18 July 2013

C.-K. Hu
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, haohu@us.ibm.com, Tel: (914)-945-2378
E. G. Liniger
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, haohu@us.ibm.com, Tel: (914)-945-2378
L. M. Gignac
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, haohu@us.ibm.com, Tel: (914)-945-2378
G. Bonilla
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, haohu@us.ibm.com, Tel: (914)-945-2378
D. Edelstein
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, haohu@us.ibm.com, Tel: (914)-945-2378
Get access

Abstract

Scaling effects on Cu microstructure, resistivity, dielectric materials, and electromigration (EM) and time dependent dielectric break down (TDDB) reliabilities for Cu interconnects were reviewed. A simple empirical model of Cu resistivity related to Cu line area was presented. Cu line microstructures containing small grains mixed with large bamboo grains in Cu damascene lines from technology nodes below 65 nm were observed. As predicted in previous work, the EM lifetime was found to degrade by about 50% for every new generation even for the same current density. The Cu grain size was found to have a large impact on pure Cu and Cu alloy EM lifetime and activation energy Ea. Ea for pure Cu line capped with selective electroless CoWP on near-bamboo, bamboo-polycrystalline, to polycrystalline only line grain structures was reduced from 2.2 eV to 1.7 eV to 0.75 eV, respectively. Ea for 40 nm wide bamboo-polycrystalline lines capped with selective chemical vapor deposition (CVD) Co was found to be 1.7 eV. Using pure Cu and Cu(Al) or Cu(Mn) diluted impurity seed layers in 40 nm wide, bamboo-polycrystalline microstructure lines and above 100 nm wide, near bamboo-like grained lines, Cu-alloy lines enhanced EM lifetimes and increased QEM from 0.9 to 1. eV and 1.0 to 1.2 eV, respectively, compared to pure Cu lines. Inter-level TDDB testing on vias connecting M1 to M2 with a via chamfer angle that varied from 58o to 81o have very similar performance with intra-level M2 data with no vias tested at the same field. This result combined with the data from a separate study, which allowed the chamfer path to be isolated from the M2-level path, suggested that the failure took place preferentially along the weak cap/ILD interface at M2 and not at the via chamfer. TDDB acceleration data indicated that the root E model was overly conservative and a more aggressive model provided a better fit to the data. TDDB lifetimes correlated fairly well with the percentage of porosity in the dielectric materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, C.-K., Gignac, L., Baker, B., Liniger, E., Yu, R., and Flaitz, P., Proc. of IEEE International Interconnect Technolgy Conf. (2007) Section 6.1Google Scholar
Gignac, L. M., Hu, C.-K., Herbst, B. W., Baker-O’Neal, B. C., Proc.. of Advanced Metallization Conf. (Mat. Res. Soc., Warrendale, PA 2007) Google Scholar
Steinhögl, W., Schindler, G., Steinlesberger, G., Engelhardt, M., Size-dependent resistivity of metallic wires in the mesoscopic range, Phys. Rev. B, 66, 075414 (2002).CrossRefGoogle Scholar
Sun, T., Yao, B., Warren, A.P., Barmak, K., Toney, M.F., Peale, R.E., Coffey, K.R., Dominant role of grain boundary scattering in the resistivity of nanometric Cu films, Phys. Rev. B, 79, 041402(R) (2009).CrossRefGoogle Scholar
Wu, W., Brogersma, S.H., Van Hove, M., and Maex, K., Appl. Phys. Lett., 84, 2838 (2004)CrossRefGoogle Scholar
Ogawa, E. T., Kim, J., Haase, G. S., Mogul, H. C., and McPherson, J. W., Proc. of IEEE International Reliability Physics Symposium (2003) p.166 CrossRefGoogle Scholar
Hu, C.-K., Gignac, L., and Rosenberg, R., Microelectronics Reliability 46, 213 (2006)CrossRefGoogle Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B., and Stevie, F.A., Mater. Res. Soc. Proc.., 480, (MRS, Warrendale, PA, 1997) 19 Google Scholar
MacDonald, D.K., Sarginson, K., Proc. Royal Soc., 203, 223 (1950)Google Scholar
Mayadas, A. F. and Shatzkes, M., Phys. Rev. B 1, 1382 (1970)CrossRefGoogle Scholar
Sondheimer, E.H., Advances in Physics, 50, 499 (2001)CrossRefGoogle Scholar
Zhang, W., Brongersma, S. H., Li, Z., Li, D., Richard, O., and Maex, K., J. Appl. Phys. 101, 063703 (2007)CrossRefGoogle Scholar
Edelstein, D., Heidenreich, J., Goldblatt, R. D., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Mostiff, W., Simon, A., Stamper, A., Dukovic, J., Wachnik, R., Rathore, H., Luce, S., and Slattery, J., Tech. Digest IEEE International Electron Devices Mtg. (Piscataway, NJ, 1997), pp.773 CrossRefGoogle Scholar
Gignac, L., private communication Google Scholar
Zhang, L., Im, J., Ho, P.S., AIP Conf. Proc., 1143, 151155 (2009).CrossRefGoogle Scholar
Hu, C.K., Ohm, J., Gignac, L. M., Breslin, C. M., Mittal, S., Bonilla, G., Edelstein, D., Rosenberg, R., Choi, S., An, J. J., Simon, A. H., Angyal, M. S., Clevenger, L., Maniscalco, J., Nogami, T., Penny, C., and Kim, B. Y., J. Appl. Phys. 111, 093722 (2012)CrossRefGoogle Scholar
Hu, C.-K., Gignac, L., and Rosenberg, R., “Electromigration in Cu thin film”, in Diffusion Processes in Advanced Technical Materials, ” Gupta, D. editor, (William Andrew, Inc., Norwich, NY, 2005) Chap.9.Google Scholar
Blech, A., J. Appl. Phys., 47, 12031208 (1976)CrossRefGoogle Scholar
Hu, C.-K., Canaperi, D., Chen, S.T., Gignac, L.M., Herbst, B., Kaldor, S., Krishnan, M., Liniger, E., Rath, D.L., Restaino, D., Rosenberg, R., Rubino, J., Seo, S.-C., Simon, A., Smith, S., Tseng, W.-T., Proc. of IEEE International Reliability Physics Symposium, IRPS, 222228 (2004).Google Scholar
Zschech, E., Meyer, M. A. and Langer, E., MRS Proceedings (2004), 812: F7.5CrossRefGoogle Scholar
Yokogawa, S. and Tsuchiya, H., J. Appl. Phys. 101, 013513 (2007)CrossRefGoogle Scholar
Maekawa, K., Mori, K., Suzumura, N., Honda, K., Hirose, Y., Asai, K., Uedono, A., and Kojima, M., Microelectronic Engineering, 85, 21372141 (2008)CrossRefGoogle Scholar
Watanabe, T., Nasu, H., Sui, T., Minamihaba, G., Kurashima, N., Gawase, A., Shimada, M., Yoshimizu, Y., Uozumi, Y., and Shibata, H., Proc. of the 10th IEEE International Interconnect Technology Conf. (Piscataway, NJ, 2007) pp. 7 Google Scholar
Christiansen, C., Li, B., Angyal, M, Kane, T.; McGahay, V., Wang, Y.Y., and Yao, S., IEEE Proc. of IEEE International Reliability Phys. Symp (2011) pp. 3E.3.1-3E.3.5Google Scholar
Hu, C.-K., Gignac, L., Baker, B., Liniger, E., Yu, R., Flaitz, P., and Stamper, A. K., AIP Conf. Proc. 945 (2007) p.27 CrossRefGoogle Scholar
Hu, C.-K., Gignac, L. M., Rosenberg, R., Herbst, B., Smith, S., Rubino, J., Canaperi, D., Chen, S. T., Seo, S. C., and Restaino, D., Appl. Phys. Lett. 84, 4986 (2004).CrossRefGoogle Scholar
Liniger, E.G., Huang, E., Shobha, H., Leung, P. K., Shaw, T. M., Cohen, S. A., Bonilla, G., Penny, C. J. and Nguyen, S., Presented in 2012 Advanced Metallization Conference, Albany, NY Google Scholar
Zhao, L., Tőkei, Z., Croes, K., Wilson, C. J., Baklanov, M., Beyer, G., and Claeys, C., Appl. Phys. Lett. 98, 032107 (2011).CrossRefGoogle Scholar
Croes, K. and Tokei, Zs., IEEE International Reliability Physics Symposium, (2010) pp. 543 Google Scholar
Liniger, E.G., Shaw, T.M., Cohen, S.A., Leung, P.K., Gates, S.M., Bonilla, G., Proc. of Advanced Metallization Conf. (Mat. Res. Soc., Warrendale, PA 2010)Google Scholar
Zhao, L., Tőkei, Z., Gischia, G. G., Pantouvaki, M., Croes, K., and Beyer, G., Proceedings of IEEE International Reliability Physics Symposium (2009) pp. 848 Google Scholar
Gischia, G.G., Croes, K., Groeseneken, G., Tokei, Z., Afanas'ev, V., Zhao, Larry, IEEE International Reliability Physics Symposium (2010) pp. 549 Google Scholar