Article contents
Measurement of Cell Adhesion and Migration on Protein-Coated Surfaces
Published online by Cambridge University Press: 15 February 2011
Abstract
The performance of biomaterials for in vivo and in vitro applications can depend critically on tissue cell adhesion and migration. We have been investigating the role that specific reversible interactions between cell adhesion receptors and complementary substratum-bound ligands play in the regulation of cell adhesion and migration. With an axisymmetric radial flow detachment assay (RFDA) [1] we measured cell-substratum adhesive strength for human smooth muscle cells (HSMCs) on surfaces coated with type IV collagen (CIV). We found that the critical shear stress for detachment increased linearly with increasing CIV coating concentration. Using time-lapse videomicroscopy and image analysis we tracked the movement of individual HSMCs over similar CIV-coated surfaces. Cell speed and persistence were determined for variations in CIV coating concentration by applying a persistent random walk model for individual cell movement. Cell speed reached a maximum at an intermediate concentration of CIV, supporting the hypothesis that an optimal cell-substratum adhesiveness exists for HSMC movement. This combination of techniques for measuring adhesion and motility provides a valuable tool to examine the role of cell-biomaterial interactions on cell behavior.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 4
- Cited by