Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T21:25:21.076Z Has data issue: false hasContentIssue false

MECHANICAL BEHAVIOR OF BULK GLASSY Fe65.5Cr4Mo4Ga4P12C5B5.5

Published online by Cambridge University Press:  01 February 2011

Mihai Stoica
Affiliation:
IFW Dresden, Institute for Metallic Materials, PO-Box 270016, D-01171 Dresden, Germany
Nicolle Radtke
Affiliation:
IFW Dresden, Institute for Metallic Materials, PO-Box 270016, D-01171 Dresden, Germany
Jürgen Eckert
Affiliation:
IFW Dresden, Institute for Metallic Materials, PO-Box 270016, D-01171 Dresden, Germany
Stefan Roth
Affiliation:
IFW Dresden, Institute for Metallic Materials, PO-Box 270016, D-01171 Dresden, Germany
Germán Alcalá
Affiliation:
IFW Dresden, Institute for Metallic Materials, PO-Box 270016, D-01171 Dresden, Germany
Annett Gebert
Affiliation:
IFW Dresden, Institute for Metallic Materials, PO-Box 270016, D-01171 Dresden, Germany
Ludwig Schultz
Affiliation:
IFW Dresden, Institute for Metallic Materials, PO-Box 270016, D-01171 Dresden, Germany
Wei Hua Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
Yan Hui Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
Get access

Abstract

The bulk amorphous Fe-based alloy with the nominal composition Fe65.5Cr4Mo4Ga4P12C5B5.5 was obtained by copper mold casting in different shapes: cylindrical rods with diameters up to 2.5 mm and discs with 10 mm diameter and 1 mm thickness. This alloy exhibits good soft magnetic properties. Using electrochemical investigations we found that the corrosion resistance of this alloy is better than that of usual FeSi steel used for magnetic applications. Beside magnetic properties and corrosion resistance, this alloy exhibits also good mechanical properties. These were investigated by compression tests, nanoindentation and by an ultrasonic technique. The Young's modulus E was found to be around 160 GPa, the yield strength σy is around 2.3 GPa and the fracture strength σf is around 3.23 GPa, together with an elastic strain εe= 1.5% and a fracture strain εf= 2.3%. The hardness was found to be around 10 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roth, S., Ferchmin, A. R., Kobe, S., Landolt-Börnstein, , Numerical Data and Functional Relationships in Science and Technology, Vol III/19 - Magnetic Properties of Metals, Ed.: Wijn, H. P. J. (Springer - Verlag, Berlin 1994).Google Scholar
2. Shen, T. D., Schwarz, R. B., Appl. Phys. Lett. 75, 49 (1999).Google Scholar
3. Inoue, A., Gook, J. S., Mater. Trans. JIM 36, 1180 (1995).Google Scholar
4. Chen, H. S., Rep. Prog. Phys. 43, 353 (1980).Google Scholar
5. Naka, M., Hashimoto, K., Masumoto, T., J. Japan Inst. Metals 38, 835 (1974).Google Scholar
6. Pang, S., Zhang, T., Asami, K., Inoue, A., Mat. Trans. JIM 43, 2137 (2002).Google Scholar
7. Inoue, A., Acta Mater. 48, 279 (2000).Google Scholar
8. Inoue, A., Shen, B. L., Yavari, A. R., Greer, A. L., J. Mater. Res. 18, 1487 (2003).Google Scholar
9. Stoica, M., Eckert, J., Roth, S., Schultz, L., Yavari, A. R., Kvick, A., J. Metastable and Nanocryst. Mater. 12, 77 (2002).Google Scholar
10. Wang, W. H., Wang, R. J., Li, F. Y., Zhao, D. Q., Pan, M. X., Appl. Phys. Lett. 74, 1803 (1999).Google Scholar
11. Wang, W. H., Bao, Z. X., Liu, C. X., Zhao, D. Q., Eckert, J., Phys. Rev. B 61, 3166 (2000).Google Scholar
12. Oliver, W.C., Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
13. Schreiber, D., Elastic Constants and Their Measurement, McGraw-Hill, (New York, 1973).Google Scholar
14. Alcalá, G., Mato, S., Skeldon, P., Thompson, G.E., Mann, A.B., Habazaki, H., Shimizu, K., Surf. Coat. Techol. 173, 293 (2003).Google Scholar
15. Chattoraj, I., Baunack, S., Stoica, M., Gebert, A., Mater. Corr. (in print).Google Scholar
16. Pang, S., Zhang, T., Asami, K., Inoue, A., Acta Mater. 50, 489 (2002).Google Scholar