Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T20:44:36.766Z Has data issue: false hasContentIssue false

Mechanical Behavior of Hierarchical Synthetic Composites

Published online by Cambridge University Press:  21 February 2011

George Mayer*
Affiliation:
Institute for Defense Analyses, 1801 N. Beauregard Street, Alexandria, VA 22311
Get access

Abstract

Diverse microstructures observed in rigid natural composites have been linked to mechanical properties that are equal to and, at times, superior to those which have been designed into synthetic composite materials comprised of organic, metallic, and ceramic constituents. The constitution, properties, and microstructures of the natural and synthetic materials are described, along with what is known and what is unknown about the constituent components, and interfaces. Hierarchical approaches to designing with and the mechanical analyses of both natural and synthetic composites will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kastelic, J., Galeski, A., and Baer, E., Conn. Tiss. Res., 6, 11 (1978).CrossRefGoogle Scholar
2. Baer, E., Gathercole, L., and Keller, A., Proc. Colston Conf. 189 (1974).Google Scholar
3. Kastelic, J. and Baer, E., Soc. Exp. Biol. Symp. XXXIV, 197 (1980).Google Scholar
4. Baer, E., and Ahmad, I. (eds.), Biostructures as Composite Materials Workshop, Cleveland, OH (1990).Google Scholar
5. Smith, C.S., A Search for Structure, 358 (M.I.T. Press, Cambridge, MA, 1982).Google Scholar
6. McEwen, E., Miller, R.L., and Bergman, C.A., Scientific American, 76, (June 1991).Google Scholar
7. Agarwal, B.D., and Broutman, L.J., Analysis and Performance of Fiber Composites, 4 (John Wiley & Sons, New York, 1980).Google Scholar
8. Reinhart, T.J., and Clements, L.J., in Composites, Engineered Materials Handbook, 28 (ASM International, Metals Park, OH, 1987).Google Scholar
9. Hua, C. and Ko, F.K., in Proc. Sampe Tech. Conf., (1989).Google Scholar
10. Ma, M., Vijayan, K., Hiltner, A., and Baer, E., J1. Mat. Sci., 25, 2039 (1990).CrossRefGoogle Scholar
11. Rockwell International Corp., Adv. Composites Design Guide, (Flight Dynamics Laboratory, Wright-Patterson AFB, OH, 1976).Google Scholar
12. Buck, M.E., and Suplinskas, R.J., in Composites, Engineered Materials Handbook, 1, 851 (ASM International, Metals Park, OH, 1987).Google Scholar
12a. Pinnel, M.R., and Lawley, A., Met. Trans. 1, 1137 (1970).CrossRefGoogle Scholar
12b. Hughes, E.J., and Rutherford, J.L., in Composite Materials-Testing and Design, ASTM STP 440, 562 (1969).Google Scholar
12c. Wilcox, B.A. and Clauer, A. H., Trans. TMS-AIMIE, 245, 1279 (1969).Google Scholar
13. Lawley, A., and Koczak, M.J., in Composite Materials, 1, 233 (Academic Press, New York, 1974).Google Scholar
14. Kum, D.W., Oyama, T., Wadsworth, J., and Sherby, O.D., J1. Mech. Phys. Sol., 31(1983).Google Scholar
15. Sherby, O.D., Oyama, T., Kum, D.W., and Wadsworth, J., Jl. Metals, 37(6), 50, (1985).Google Scholar
16. Sherby, O.D., Lee, S., Koch, R., Sumi, T., and Wolfenstine, J., J. Mater. and Manuf. Proc., 5(3), 363 (1990).CrossRefGoogle Scholar
17. Jackson, A.P., Vincent, J.F.V., and Turner, R.M., Proc. Roy. Soc., B234, 415, (1988).Google Scholar
18. Lesuer, D.R., Lawrence Livermore National Laboratory, Livermore, CA, private communication (May 1991).Google Scholar
19. Yasrebi, M., Kim, G.H., Gunnison, K.E., Milius, D.L., Sarikaya, M., and Aksay, I., in MRS Symposium Proceedings 180, 625 (1990).CrossRefGoogle Scholar
20. Ashby, M.F., Acta Metall., 37(5.) 1278 (1989).Google Scholar
21. Wainwright, S.A., Duke University, Durham, NC, private communication (July 1991).Google Scholar
22. Calvert, P.D., University of Arizona, Tucson, AZ, private communication (August 1991).Google Scholar
23. Broutman, L.J., and Krock, R. H., in Modern Composite Materials, 13 (Addison-Wesley Pub. Co., Reading, MA, 1967).Google Scholar
24. Kelly, A., and Davies, G.J., in Metall. Rev., 10(3), 12 (1965).CrossRefGoogle Scholar
25. Lee, S., Wadsworth, J., and Sherby, O.D., J1. Comp. Mater., 25, 842 (1991).CrossRefGoogle Scholar
26. Vincent, J., Structural Biomaterials (Rev.), 128 (Princeton U. Press, Princeton, NJ, 1990).Google Scholar
27. Ker, R.F., D. Phil. Thesis, U. of Oxford (1977).Google Scholar
28. Jackson, A.P., Vincent, J.F.V., and Turner, R.M., op. cit.Google Scholar
29. Padawer, G.E., and Beecher, N., Poly. Eng. Sci., 10, 1985 (1970).CrossRefGoogle Scholar
30. Riley, V.R., J1. Comp. Mater., 2., 436 (1968).CrossRefGoogle Scholar
31. Hull, D., An Introduction to Composite Materials, (Cambridge U. Press, Cambridge, U.K., 1981).Google Scholar
32. Vincent, J., op. cit., 139.Google Scholar
33. Kelly, A., and Davies, G.J., op. cit., 14.Google Scholar
34. Chawla, K.K., Composite Materials Science and Engineering, 229 (Springer-Verlag, New York, 1987).Google Scholar
35. Hull, D., op. cit., 129.Google Scholar
36. Chawla, K.K., op. cit., 232.Google Scholar
37. Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., and Birchall, J.D., Nature, 347, 455 (1990).CrossRefGoogle Scholar
38. Cook, J., and Gordon, J.E., Proc. Roy. Soc. Lond., A282, 508 (1964).Google Scholar