Skip to main content Accessibility help
×
×
Home

Mechanical Characterisation of the NiTi Shape Memory Alloy for Microfluidic Valve Applications

  • Alistair M. Waddell (a1) (a2), Jeff Punch (a1) (a2), Walter Stanley (a3), Nicholas Jeffers (a4) and Jason Stafford (a4)...

Abstract

Photonics Integrated Circuits (PICs) are being applied by the telecommunications industry as transceivers for fibre optic networks. The core component of a typical PIC is the laser array and these devices can have relatively low operating temperatures (15°C - 25°C) with a tight operating range (±0.1K). To accommodate such a specification, a thermal control system is required that can change the cooling rate through feedback. The power density of next generation PICs is at such a level to demand novel thermal management architectures including developments such as near source liquid cooling. In order to control the thermal performance of fluidic devices, effective methods for varying the rate of coolant are an essential component. Consequently, micro-valve structures are required, ideally involving passive actuation to meet stringent reliability standards. One solution to this challenge is to exploit the phase-change driven shape memory effect of the NiTi Shape Memory Alloy (SMA). A micro-valve could be developed from the NiTi SMA, thermally coupled to the laser array component in order to work passively to regulate the flow of coolant in a micro-channel. Such a valve would have to be intrinsically reliable, and the goal of this paper is to investigate the conditions that will affect this reliability. The objective of the work is to investigate the mechanical properties relevant to the design of a passive NiTi SMA micro-valve, with a focus on the formation of stress-induced Martensite bands. It is not understood why these bands form on a plane inclined at ∼55° to the axis of loading and in this paper theory is presented that suggests a reasoning for this. A plate sample of NiTi was tested in uni-axial tension and Digital Image Correlation (DIC) used to analyse the strain fields across the surface of the sample. The DIC results revealed areas of high stress concentrations occurring in bands inclined on average 53.86° to the axis of loading. The theory and experimental observations are in agreement with the literature but to validate the theory the crystal texture needs to be analysed in the stress concentration regions. This paper provides valuable insight into the mechanical behaviour of a passive NiTi SMA micro-valve subjected to a sufficient pressure to form stress-induced Martensite.

Copyright

References

Hide All
1. Brinson, C. L., Schmidt, I. and Lammering, R., J. Mechanics and Physics of Solids 52, 15491571 (2004).
2. Li, Z. Q. and Sun, Q. P., International Journal of Plasticity 18, 14811498 (2002).
3. Sun, Q. P. and Ng, K. L., Mechanics of Materials 38(1), 4156 (2006).
4. Messner, C., Reisner, G., Sun, Q. and Werner, E., Computational Materials Science 19(14), 313319 (2000).
5. Sittner, P., Liu, Y. and Novak, V., J. Mechanics and Physics of Solids 53(8), 17191746 (2005).
6. Ye, Y. Y., Chan, C. T. and Ho, K. M., Phys. Rev. B 56(7), 36783689 (1997).
7. Kudoh, Y. and Tokonami, M., Acta Metallurgica 33(11), 20492056 (1985).
8. Huang, X., Ackland, G. J. and Rabe, K. M., Nature Materials 2(5), 307311 (2003).
9. Comer, A. J., Katnam, K. B., Stanley, W. F. and Young, T. M., International Journal of Adhesion and Adhesives 40, 215223 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed