Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T12:43:29.263Z Has data issue: false hasContentIssue false

Mechanism of charge transport in organic semiconductors and carbon nanomaterials

Published online by Cambridge University Press:  28 May 2015

Yuqian Jiang
Affiliation:
MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
Jinyang Xi
Affiliation:
MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
Zhigang Shuai*
Affiliation:
MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
Get access

Abstract

We develop theoretical descriptions for charge transport in organic semiconductors and carbon nanomaterials. For the localized charges, we found the quantum nuclear tunneling effect is essential which could manifest isotope effect for mobility as well as exotic optical feature. Because the nuclear tunneling tends to favor electron transfer while heavier nuclei decrease the quantum effect, isotopic substitution should reduce carrier mobility. Moreover, the isotopic effect only occurs when the substituted nuclei contribute actively to vibrations with appreciable charge reorganization energy and coupling with carrier motion. For the band-like transport, we propose a Wannier extrapolation scheme for computing the electron-phonon interaction matrix for the Boltzmann equation. Our calculation indicates that the intrinsic electron-phonon scatterings in two-dimensional carbon materials are dominated by low-energy longitudinal-acoustic phonon scatterings over a wide range of temperatures, while by high-frequency optical phonons at high temperature. The electron mobilities of α- and γ-graphynes are predicted to be ca.104 cm2V-1s-1 at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yuan, Y. B., Giri, G., Ayzner, A. L., Zoombelt, A. P., Mannsfeld, S. C. B., Chen, J. H., Nordlund, D., Toney, M. F., Huang, J. S. and Bao, Z. N., Nature communications, 5 (2014).Google Scholar
Zhang, L., Fonari, A., Liu, Y., Hoyt, A. L. M., Lee, H., Granger, D., Parkin, S., Russell, T. P., Anthony, J. E., Bredas, J. L., Coropceanu, V. and Briseno, A. L., Journal of the American Chemical Society, 136, 92489251 (2014).CrossRefGoogle Scholar
Long, M.-Q., Tang, L., Wang, D., Wang, L. and Shuai, Z., Journal of the American Chemical Society, 131, 1772817729 (2009).CrossRefGoogle Scholar
Shuai, Z., Xu, W., Peng, Q. and Geng, H., Science China Chemistry, 56, 12771284 (2013).CrossRefGoogle Scholar
Shuai, Z. and Peng, Q., Physics Reports 537, 123156 (2013).CrossRefGoogle Scholar
Tang, L., Long, M., Wang, D. and Shuai, Z., Science in China Series B: Chemistry, 52, 16461652 (2009).CrossRefGoogle Scholar
Jiang, Y., Xu, H., Zhao, N., Peng, Q. and Shuai, Z., Acta Chim. Sinica, 72, 201207 (2014).CrossRefGoogle Scholar
Shi, Q. H., Peng, Q., Sun, S. R. and Shuai, Z. G., Acta Chim. Sinica, 71, 884891 (2013).CrossRefGoogle Scholar
Brédas, J. L., Calbert, J. P., da Silva Filho, D. A. and Cornil, J., Proceedings of the National Academy of Sciences, 99, 58045809 (2002).CrossRefGoogle Scholar
Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R. and Brédas, J.-L., Chemical Reviews, 107, 926952 (2007).CrossRefGoogle Scholar
Gorham-Bergeron, E. and Emin, D., Physical Review B, 15, 36673680 (1977).CrossRefGoogle Scholar
Ulstrup, J. and Jortner, J., The Journal of Chemical Physics, 63, 43584368 (1975).CrossRefGoogle Scholar
Asadi, K., Kronemeijer, A. J., Cramer, T., Jan Anton Koster, L., Blom, P. W. M. and de Leeuw, D. M., Nature communications, 4, 1710 (2013).CrossRefGoogle Scholar
Yuen, J. D., Menon, R., Coates, N. E., Namdas, E. B., Cho, S., Hannahs, S. T., Moses, D. and Heeger, A. J., Nat Mater, 8, 572575 (2009).CrossRefGoogle Scholar
Kronemeijer, A. J., Huisman, E. H., Katsouras, I., van Hal, P. A., Geuns, T. C. T., Blom, P. W. M., van der Molen, S. J. and de Leeuw, D. M., Physical Review Letters, 105, 156604 (2010).CrossRefGoogle Scholar
Rodin, A. S. and Fogler, M. M., Physical Review Letters, 105, 106801 (2010).CrossRefGoogle Scholar
Nan, G., Yang, X., Wang, L., Shuai, Z. and Zhao, Y., Physical Review B, 79, 115203 (2009).CrossRefGoogle Scholar
Sakanoue, T. and Sirringhaus, H., Nat Mater, 9, 736740 (2010).CrossRefGoogle Scholar
Geng, H., Peng, Q., Wang, L., Li, H., Liao, Y., Ma, Z. and Shuai, Z., Advanced Materials, 24, 35683572 (2012).CrossRefGoogle Scholar
Kaasbjerg, K., Thygesen, K. S. and Jacobsen, K. W., Physical Review B, 85, 115317 (2012).CrossRefGoogle Scholar
Borysenko, K. M., Mullen, J. T., Li, X., Semenov, Y. G., Zavada, J. M., Nardelli, M. B. and Kim, K. W., Physical Review B, 83, 161402 (2011).CrossRefGoogle Scholar
Borysenko, K. M., Mullen, J. T., Barry, E. A., Paul, S., Semenov, Y. G., Zavada, J. M., Nardelli, M. B. and Kim, K. W., Physical Review B, 81, 121412 (2010).CrossRefGoogle Scholar
Giustino, F., Cohen, M. L. and Louie, S. G., Physical Review B, 76, 165108 (2007).CrossRefGoogle Scholar
Vukmirović, N., Bruder, C. and Stojanović, V. M., Physical Review Letters, 109, 126407 (2012).CrossRefGoogle Scholar
Casula, M., Calandra, M. and Mauri, F., Physical Review B, 86, 075445 (2012).CrossRefGoogle Scholar
Lin, S. H., Chang, C. H., Liang, K. K., Chang, R., Shiu, Y. J., Zhang, J. M., Yang, T. S., Hayashi, M. and Hsu, F. C., Adv. Chem. Phys., 121, 188 (2002).Google Scholar
Valeev, E. F., Coropceanu, V., da Silva Filho, D. A., Salman, S. and Brédas, J.-L., Journal of the American Chemical Society, 128, 98829886 (2006).CrossRefGoogle Scholar
Baroni, S., de Gironcoli, S., Dal Corso, A. and Giannozzi, P., Reviews of Modern Physics, 73, 515562 (2001).CrossRefGoogle Scholar
Xi, J., Long, M., Tang, L., Wang, D. and Shuai, Z., Nanoscale, 4, 43484369 (2012).CrossRefGoogle Scholar
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. and Vanderbilt, D., Reviews of Modern Physics, 84, 14191475 (2012).CrossRefGoogle Scholar
Noffsinger, J., Giustino, F., Malone, B. D., Park, C.-H., Louie, S. G. and Cohen, M. L., Computer Physics Communications, 181, 21402148 (2010).CrossRefGoogle Scholar
Frisch, M. J., Trucks, G. W. and Schlegel, H. B., Gaussian 03, (2004) Gaussian Inc., Wallingford CT.Google Scholar
Reimers, J. R., Journal of Chemical Physics, 115, 91039109 (2001).CrossRefGoogle Scholar
Nan, G. and Li, Z., Phys. Chem. Chem. Phys., 14, 94519459 (2012).CrossRefGoogle Scholar
Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. and Carey, J. T., Chemistry of Materials, 20, 74867491 (2008).CrossRefGoogle Scholar
Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da Silva Filho, D. A., Brédas, J.-L., Miller, L. L., Mann, K. R. and Frisbie, C. D., The Journal of Physical Chemistry B, 108, 1928119292 (2004).CrossRefGoogle Scholar
He, T., Stolte, M. and Würthner, F., Advanced Materials, 25, 69516955 (2013).CrossRefGoogle Scholar
Minder, N. A., Ono, S., Chen, Z., Facchetti, A. and Morpurgo, A. F., Advanced Materials, 24, 503508 (2012).CrossRefGoogle Scholar
Xie, W., McGarry, K. A., Liu, F., Wu, Y., Ruden, P. P., Douglas, C. J. and Frisbie, C. D., The Journal of Physical Chemistry C, 117, 1152211529 (2013).CrossRefGoogle Scholar
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A. and Gershenson, M. E., Physical Review Letters, 93, 086602 (2004).CrossRefGoogle Scholar
Lee, B., Chen, Y., Fu, D., Yi, H., Czelen, K., Najafov, H. and Podzorov, V., Nat. Mater., 12, 11251129 (2013).CrossRefGoogle Scholar
Paolo, G., Stefano, B., Nicola, B., Matteo, C., Roberto, C., Carlo, C., Davide, C., Guido, L. C., Matteo, C., Ismaila, D., et al. , Journal of Physics: Condensed Matter, 21, 395502 (2009).Google Scholar
Ferry, D. K., Semiconductor Transport (Taylor and Francis, New York, 2000).Google Scholar
Kaasbjerg, K., Thygesen, K. S. and Jacobsen, K. W., Physical Review B, 85, 165440 (2012).CrossRefGoogle Scholar