Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T21:34:54.613Z Has data issue: false hasContentIssue false

Mechanisms of Al Self- and Al-Substituting Solute Diffusion in Ni3Al

Published online by Cambridge University Press:  10 February 2011

St. Frank
Affiliation:
Institut für Metallforschung, Westfälische-Wilhelms Universität, D-48149 Munster, Germany
S. Divinski
Affiliation:
Institut für Metallforschung, Westfälische-Wilhelms Universität, D-48149 Munster, Germany
Chr. Herzig
Affiliation:
Institut für Metallforschung, Westfälische-Wilhelms Universität, D-48149 Munster, Germany
Get access

Abstract

Diffusion of the Al-substituting elements Ga, Ge, Ti and Nb has been investigated in Ni3Al single crystals by the secondary ion mass spectrometry (SIMS). A model for the minority component diffusion by anti-structure defects has been suggested for the Ll2 structure. It involves both nearest neighbor jumps of the solute atoms on the Ni sublattice as anti-structure atoms and the formation of so-called anti-structure bridges which correspond to jumps between different sublattices. The model under consideration was shown to agree with the experimental data on the Al-substituting solute diffusion (X = Ga, Ge, Ti, Nb) in Ni3Al and it allows to explain also the observed ratio of the diffusivities DNi/DX, which may be higher and/or lower than unity in dependence on the solute and temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hancock, G. F., Phys. stat. sol. (a) 7, p. 535 (1971).Google Scholar
2. Hoshino, K., Rothman, S. J. and Averback, R. S., Acta metall. 36, p. 1271 (1988).Google Scholar
3. Minamino, Y., Jung, S. B., Yamane, T. and Hirao, K., Metall. Trans. A 23, p. 2783 (1992).Google Scholar
4. Jung, S. B., Minamino, Y., Araki, H., Yamane, T., Hirao, K. and Saji, S., Defect and Diffusion Forum 95/98, p. 859 (1993).Google Scholar
5. Frank, St., Sodervall, U. and Herzig, Chr., Phys. stat. sol. (b) 191, p. 45 (1995).Google Scholar
6. Shi, Y., Frohberg, G. and Wever, H., Phys. stat. sol. (a) 152, p. 361 (1995).Google Scholar
7. Frank, St., Sodervall, U. and Herzig, Chr., Diffusion and Defect Forum 143/147, p. 245 (1997).Google Scholar
8. Frank, St., Herzig, Chr. and Sodervall, U., Intermetallics, 5, p. 221 (1997).Google Scholar
9. Minamino, Y., Yoshida, H., Jung, S. B., Hirao, K. and Yamane, T., Diffusion and Defect Forum 143/147, p. 257 (1997).Google Scholar
10. Larikov, L. N., Geichenko, V. V. and Fal'chenko, V. M., Diffusion Processes in Ordered Alloys, Amerind Publ. Co. Pvt. Ltd., Oxonian Press, New Delhi, 1981.Google Scholar
11. Wever, H., Defect and Diffusion Forum 83, p. 55 (1992).Google Scholar
12. Debiaggi, S. B., Decorte, P. M. and Monti, A. M., Phys. stat. sol. (b) 195, p. 37 (1996).Google Scholar
13. Koiwa, M., Numakura, H. and Ishioka, S., Diffusion and Defect Forum 143/147, p. 209 (1997).Google Scholar
14. Belova, I. V. and Murch, G. E., Diffusion and Defect Forum 143/147, p. 321 (1997).Google Scholar
15. Belova, I. V. and Murch, G. E., J. Phys. Chem. Solids 58, p. 301 (1997).Google Scholar
16. Numakura, H., Ikeda, T., Koiwa, M. and Almazouzi, A., Phil. Mag. A 77, p. 887 (1998).Google Scholar
17. Sun, Jian and Lin, T. J., Acta metall. mater. 42, p. 195 (1994).Google Scholar
18. Badura-Gergen, K. A. and Schaefer, H.-E., Phys. Rev. B 56, p. 3032 (1997).Google Scholar
19. Ochiai, S., Oya, Y. and Suzuki, T., Acta metall. 32, p. 289 (1984).Google Scholar
20. Kao, C. R. and Chang, Y. A., Intermetallics 1, p. 237 (1993).Google Scholar
21. Divinski, S. V. and Larikov, L. N., J. Phys.: Condens. Matter 35, p. 7377 (1997).Google Scholar
22. Belova, I. V. and Murch, G. E., Intermetallics, (in press).Google Scholar