Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-08T10:08:44.826Z Has data issue: false hasContentIssue false

Memory Devices Based on Solid Electrolytes

Published online by Cambridge University Press:  01 February 2011

Michael N Kozicki*
Affiliation:
michael.kozicki@asu.edu, Arizona State University, Center for Applied Nanoionics, Box 876206, Tempe, AZ, 85287-6206, United States, 480 965 2572, 480 965 8118
Get access

Abstract

Current mainstream memory technologies are unlikely to completely fulfill the solid state data storage requirements that will be imposed beyond the 32 nm node of the International Technology Roadmap for Semiconductors. One potential replacement technology is resistance change memory based on solid electrolytes and a number of significant research and development efforts are already underway. The lowering of the resistance is attained by the reduction of ions in a relatively high resistivity electrolyte to form a conducting bridge between the electrodes. The resistance is returned to the high value via the application of a reverse bias that results in the breaking of the conducting pathway. Germanium chalcogenides and Ag-Ge-S ternaries in particular possess good thermal processing characteristics while maintaining the necessary high ion mobility for rapid switching. Thermally diffused copper in deposited SiO2 also is of interest, as thermal stability in excess of 600°C and commonly used constituents makes this material system compatible with the widest range of back-end-of-line processes. This paper details some of the developments in the understanding of the materials used in solid electrolyte resistance change devices and presents a short review of the electrical characteristics of devices based on Ag-Ge-S and Cu-Si-O electrolytes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The latest version of the International Technology Roadmap for Semiconductors may be obtained from http://public.itrs.net.Google Scholar
2. Kartini, E., Collins, M. F., Indayaningsih, N. and Svensson, E. C., Sol. State Ion. 2000, 138,115.Google Scholar
3. Ogawa, H., Kobayashi, M., Sol. Stat. Ion. 2002,148, 211.Google Scholar
4. Tanaka, K., "Chalcogenide Glasses"in Encyclopedia of Materials: Science and Technology, Elsevier, 2000.Google Scholar
5. Feng, X., Bresser, W.J. and Boolchand, P., Phys. Rev. Lett. 1997, 78, 4422.Google Scholar
6. Tanaka, K., Miamoto, Y., Itoh, M., Bychkov, E., Phys. Stat. Sol. A 1999,173, 317.Google Scholar
7. Bychkov, E., Sol. Stat. Ion. 2000, 136-137,1111.Google Scholar
8. Mitkova, M., Wang, Y., Boolchand, P., Phys. Rev. Lett. 1999, 83, 3848.Google Scholar
9. Mitkova, M., Kozicki, M.N., J. Non-Cryst. Sol. 2002, 299-302, 1023.Google Scholar
10. Kozicki, M.N., Mitkova, M., Zhu, J., Park, M., Microel. Eng. 2002, 63, 155.Google Scholar
11. Kozicki, M.N., Park, M., and Mitkova, M., IEEE Trans. Nanotechnology 2005, 4, 331.Google Scholar
12. Balakrishnan, M., Kozicki, M.N., Poweleit, C.D., Bhagat, S., Alford, T. L., Mitkova, M., J.Non-Cryst. Sol., in press.Google Scholar
13. Kozicki, M.N., Gopalan, C., Balakrishnan, M., and Mitkova, M., IEEE Trans.Nanotechnology, 2006, 5, 535.Google Scholar
14. Kotzeniewski, C., in The Electrochemical Double Layer, (Ed.: Conway, B. E.), The Electrochemical Society Inc., 1997.Google Scholar
15. West, W.C., Sieradzki, K., Kardynal, B., Kozicki, M.N., J. Electrochem. Soc. 1998, 145, 2971.Google Scholar
16. Sakamoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., Aono, M.., Appl.Phys. Lett. 2003, 82, 3032.Google Scholar
17. Terabe, K., Hasegawa, T., Nakayama, T., Aono, M., Nature, 2005, 433, 47.Google Scholar
18. Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M., IEEE J. Sol. St. Ccts. 2005, 40, 168.Google Scholar
19. Sakamoto, T., Banno, N., Iguchi, N., Kawaura, H., Kaeriyama, S., Mizuno, M., Terabe, K., Hasegawa, T., Aono, M., IEDM Tech. Dig. 19.5, 2005. Google Scholar
20. Kozicki, M.N., Balakrishnan, M., Gopalan, C., Ratnakumar, C., and Mitkova, M., IEEE Non-Volatile Memory Technology Symposium 2005, D5, 1.Google Scholar
21. Balakrishnan, M., Thermadam, S.C.P., Mitkova, M., and Kozicki, M.N., Non-Volatile Memory Technology Symposium 2006, 104.Google Scholar
22. Kund, M., Beitel, G., Pinnow, C., Röhr, T., Schumann, J. Symanczyk, R., Ufert, K., and Müller, G., IEDM Tech. Dig., 31.5, 2005. Google Scholar
23. Hönigschmid, H., Angerbauer, M., Dietrich, S., Dimitrova, M., Gogl, D., Liaw, C., Markert, M., Symanczyk, R., Altimime, L., Bournat, S. and Müller, G., IEEE VLSI Circuits Symposium, Honolulu, Hawaii, June 2006, 13.2. Google Scholar
24. Fujita, S. Fujita, S., Abe, K. and Lee, T.H., NSTI-Nanotech, Anaheim, California, May 2005, 31.04.Google Scholar
25. Kim, C.-J., Yoon, S.-G., Choi, K.-J., Ryu, S.-O., Yoon, S.-M., Lee, N.-Y., Yu, B.-G., J. of Vac. Sci. & Technol. B: Microel. and Nanom. Str. 2006, 24, 721.Google Scholar
26. Gilbert, N.E., Gopalan, C., and Kozicki, M.N., Sol. Stat. Electr. 2005, 49, 1813.Google Scholar